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Abstract

We examine an epitaxial crystal growth model in the context of absolute and convective instabilities and show that a
strain-induced step bunching instability can be convective. Using analytic stability theory and numerical simulations,
we study the response of the crystal surface to an inhomogeneous deposition flux that launches impulsive and time-
periodic perturbations to a uniform array of steps. The results suggest a new approach to morphological pattern-

ing. © 2001 Elsevier Science B.V. All rights reserved.
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Fifty years ago, Burton, Cabrera and Frank
proposed their step-flow model for crystal growth
onto a vicinal surface [1,2]. By now, it is well
verified that macroscopically flat steps can move
parallel to themselves when deposited atoms dif-
fuse across flat crystal terraces and attach to step
edges. However, it is also understood that under
suitable conditions, kinetic instabilities occur that
lead to wandering and bunching of the steps as
growth proceeds [3-6]. To uncover such instabili-
ties, it is usual to ask whether the amplitude of an
imposed periodic displacement of the steps grows
or decays as time goes on. This was done, for
example, in a recent interesting study of step
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bunching during strained layer growth onto a
vicinal surface [7,8].

In this letter, we generalize the analysis of Refs.
[7,8] and distinguish between an absolute step
instability and a convective step instability. This
type of distinction is widely appreciated in hydro-
dynamics [9], plasma physics [10,11], and the theory
of dendritic crystal growth [12]. When an instabil-
ity is absolute, an initial, localized perturbation
spreads more rapidly than it propagates and the
system is not sensitive to subsequent perturbations.
When an instability is convective, an initial loca-
lized perturbation propagates more rapidly than it
spreads and the system is sensitive to subsequent
perturbations. In the present context, we will see
below that this sensitivity presents an opportunity
for morphological control at the nanoscale.

We consider a regular, staircase-like surface
composed of flat terraces of average width ¢. The
terraces are separated by straight, parallel, atomic
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height steps with horizontal positions x, (the index
n increases in the direction of negative surface
slope). We assume growth conditions where a flux
of atoms impinges on each lattice site at a rate F.
This leads to a build-up of a finite concentration of
adatoms on the terraces. Adatoms diffuse on ter-
races and attach to the bottom of steps at a rate K.
Atoms can also detach from steps towards neigh-
boring terraces. These processes lead to step mo-
tion which can be described by simple equations
[1,2]. If the flux is large enough, the steps acquire a
net positive velocity, inducing vertical growth of
the crystal by one atomic unit after every step has
moved a distance of one terrace width.

The equations of motion for the steps are much
more complicated if there are long-range interac-
tions between steps. An example is the growth of a
strained film where the lattice constant of the de-
posited material differs from the lattice constant
of the substrate. The corresponding equations of
motion [7,8] can be simplified if we assume that
diffusion is fast. In this limit, the step velocities are
given by

F K
v, = _(xn+1 _xnfl) +§ (ﬂn+1 + :un—l — Zﬂn) (1)

2

The first term accounts for the deposited material
each step collects from its neighboring terraces.
The second term accounts for mass exchange be-
tween steps by detachment-attachment events. p,
is the chemical potential associated with the ad-
dition of atoms to the solid at the nth step. It is
given by

un:Z((}c _ﬂx)3_x ix)7 @)
m#n m n m n

where o characterizes a step-step attraction due to
local elastic relaxations and f§ characterizes a step—
step repulsion due to intrinsic elastic stress.

One solution to this model is uniform step flow,
where every step moves with velocity F¢. Under
certain circumstances, this steady state becomes
unstable and groups of steps bunch together [7,8].

The distinction between an absolute and a
convective instability is most significant for a
problem with at least one preferred frame of refer-
ence. For our problem, the lab frame is one such
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frame. We will also be interested in perturbing the
step train by supplementing the uniform deposi-
tion flux with a very narrow beam of atoms that
can be moved across the surface. This beam is at
rest in the source frame of reference.

In the lab frame, the linear stability of uniform
step-flow motion against a perturbation of the step
positions 0x,(¢) = eexp [i(nfqg — wt)] leads to the
dispersion relation

Din(g, ) = —i(w — Flg + F sin {q)
M

— 2K(cos g — I)Z(cosqu— 1)

m=1
o 3p
* (W‘W) ()

Here M is the number of neighbors a step interacts
with on each side. In a general frame of reference,
D(q, ®) = Diap(q, ® + qvr), where vy is the velocity
of the frame of reference with respect to the
lab frame. Conventional stability theory seeks the
complex zeroes w(q) = wr(g) + iwi(g) of D(q, )
for given real ¢. wi(g) > 0 is a sufficient condition
for instability of uniform step flow. Fig. 1 shows
wi(g) of our model for different values of . The
g = 0 mode is marginal for all values of «. When
o > 0 is small there are two additional marginal
modes with ¢ = £¢,. All the modes with —¢gy, <
g < gm (except for ¢ = 0) are unstable. When « is
increased, ¢, increases towards n/¢ and the in-
terval of unstable modes becomes wider.

-7/ -/(2)) 0 m(2l) ol
q

Fig. 1. wi(g) for real ¢ and different values of «. The values of
the other parameters in units where £ =1 are F =10, K = 6,
p=1and M =299.
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To distinguish between different types of insta-
bility, we consider the long-time behavior of the
mode with wave number ¢° that has a zero group
velocity: dwr(q)/0ql,_,0 = 0. By definition, the
system is absolutely unstable if w;(¢°) >0 and
convectively unstable if w;(¢°) < 0. In physical
terms, this is equivalent to examining the long-time
behavior of a disturbance launched by an impulse-
type (localized in space and time) perturbation.
When the instability is absolute, the disturbance
spreads in space more rapidly than it propagates;
an observer at any fixed position sees asymptotic
growth since w;(¢°) > 0. When the instability is
convective, the disturbance propagates more rapi-
dly than it spreads; an observer at any fixed posi-
tion may see transient growth as the disturbance
moves by, but finds asymptotic decay since
w1(q°) < 0.

Fig. 2 is a space-time plot of step trajectories (in
the lab frame) determined by a numerical solution
of the equations of motion with an impulsive
perturbation applied at t =0 to a single step. In
the laboratory, a perturbation of this kind can be
generated using the narrow beam source men-
tioned above. (Our main conclusions should re-
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Fig. 2. Space-time plot of a system of 300 steps with periodic
boundary conditions after the application of an impulsive
perturbation to a single step at x = 0 and ¢ = 0. Each line shows
the trajectory of a single step in the lab frame. Only a small
portion of the system is plotted and the step motion is ampli-
fied. The choice of parameters for this specific system in units
where f=1is F=10,K=6,2=0.9, f =1 and M = 10.

main valid even if many steps are perturbed in an
actual experiment.) The perturbation has no effect
on uniform step flow in the portion of the surface
labeled Region B in Fig. 2. However, in Region A,
the perturbation creates a disturbance that spreads
and amplifies in the direction of step flow. vy;, and
Umax are the minimal and maximal group velocities
(in the lab frame) of unstable Fourier modes (for
which w;(q) = 0). As it happens, vy, = 0 for this
model so the disturbance neither spreads out over
the entire crystal nor propagates away from the
point where the impulse was applied. In other
words, step bunching as observed in the lab frame
is “on the border” between absolute and convec-
tive instability. This fact can be used to test the
step-bunching model experimentally because it
does not depend on any of the model parameters.
By contrast, the transition between absolute and
convective instability in hydrodynamic systems
typically occurs at a single value of the control
parameter.

We turn next to the response of the growing
crystal to spatially localized but time-periodic
perturbations produced by the narrow beam
source. Such perturbations generate two types of
asymptotic behavior which we will call switch-on
bunching and time-periodic bunching. If the source
moves with velocity v (in the lab frame) in the
interval v, < vs < Umax, the system is absolutely
unstable in the source frame and switch-on
bunching occurs exclusively. For this situation, the
step pattern develops analogously to the impul-
sive case (Fig. 2). However, if v5 > vyax OF U5 < Upin,
the system is convectively unstable in the source
frame. Switch-on bunching still occurs on one
portion of the crystal surface, but, in addition,
time-periodic bunching (which is sensitive to the
nature of the forcing) can occur on an adjacent
portion of the surface (Region C in Fig. 3).

To determine whether time-periodic bunching
does occur in the regime of convective instability, it
is sufficient to examine the long time linear re-
sponse of the step system to a spatially localized,
time-harmonic source,

S,(t) = exp ( = (- FOF iwst> Y

4a?
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Fig. 3. Space-time plots of systems of 300 steps with periodic
boundaries perturbed by a narrow harmonic source. Each line
shows the trajectory of a single step in the lab frame. Only a
small portion of the system is plotted and the step motion is
amplified. We have indicated the rays which correspond to the
source velocity and the velocities vy, and vy.x. When the source
velocity vs > Umax and |ws| < @, periodic step bunching is am-
plified in Region C in the direction opposite to step flow (a).
When 05 < vmin and |ws| < w,, periodic step bunching is ampli-
fied in Region C along the direction of step flow (b). The choice
of parameters for these specific systems in units where ¢ =1 is
F=10,K=6,0=0.9and = 1. The source width is a = £.

where s, a and vy are the source frequency, width
and velocity in the lab frame. This is called the
signaling problem [9]. In the source frame (ng =
n— (vs — F€)t/¢) we find that
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exp(inglq — a’q*)
C Dlab(qy (ON + Usq)

0x,, (1) ox exp(—iwst)

dg, (5)

where Dy, is the dispersion relation (3) continued
to the complex ¢ plane and C is a suitable contour
in this plane. The zeroes of Dy (g, s + vsq) in the
¢ plane dominate the integral. Among these, the
most important zero corresponds to the single
mode whose wave vector ¢*(ws) has a real part
gx (ws) in the interval [—n/¢, n/¢] and an imaginary
part ¢;(w;) that can change sign as w, changes.

The main result is that there exists a critical
frequency

D = |F sin lgm + qm(vs - F/)| (6)

If |ws| > o, the amplitude of time-periodic step
bunching decays as the distance from the source
increases. The source has little effect on the step-
flow pattern in this case. However, if |ws| < o, the
source induces time-periodic step bunching that
grows exponentially in space:

exp [inglq — iwgt — a*q?]
leab(‘[~ws+vs‘l) ’ (7)
dg a=q" (ws)

0x,, (1) ox

There are two cases to consider. If vg > vyay, the
disturbance grows in the direction opposite to step
flow because gj(ws) > 0 (Region C of Fig. 3(a)).
Conversely, if vy < vmin, We find g} (ws) < 0 and the
disturbance grows along the direction of step flow
(Region C in Fig. 3(b)). Regions A and B corre-
spond to switch-on bunching and uniform step
flow similar to the corresponding regions in Fig. 2.

For a step bunch that grows from a time-har-
monic perturbation, there is very little nonlinear
distortion of the bunch shape close to the source,
as expected. Frequency spectra collected at differ-
ent spatial locations in Region C show that higher
harmonics contribute more as the distance from
the source increases. Nevertheless, the amplitudes
of the fundamental and all higher harmonics satu-
rate for distances sufficiently far from the source.

The stabilizing influence of nonlinearity in the
step-flow case prevents the system from wandering
too far away from the linear response of the im-
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posed perturbation. This provides an opportunity
to exploit the bunching instability to intentionally
pattern the crystal surface in Region C. The idea is
to apply a perturbation prepared as a superposi-
tion of terms of the form (4) with frequencies in the
range |wg| < w.. As long as nonlinear effects can
be ignored, each of these terms evolves according
to Eq. (7) in Region C. We can therefore tune the
values of the amplitudes and phases of the various
terms of the perturbation, so that at a specific time
the step configuration in Region C would be close
to a pre-designed morphology.

In order to demonstrate this idea, we attempted
to induce a groove-like pattern in a region which
contained 125 steps. To construct this pattern, we
used the linear analysis to optimize a small set of
amplitudes and phases for waves with frequencies
in the range |ws| < w.. We then numerically solved
the step equations of motion with the designed

patterned region

900 1000 1100 1200
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Fig. 4. Surface height (in units of the height of a single step, /)
as a function of position evolving from a superposition of si-
nusoidal disturbances. # = 0 corresponds to the plane x, = nf
and the unit of length is the average step separation on this
plane, { = /2 + k2. The source velocity is vs = F¢ and it is
located at x/l7 = 1200. Regions A-C in (a) are analogous to the
corresponding regions in Fig. 3(a). (b) is a magnification of the
region marked by the two-sided arrow in (a). The solid line in
(b) shows the predicted linear response, while the actual surface
morphology, resulting from the solutions of the step equations
of motion, is shown as circles.

source. The resulting surface height as a function
of position is shown as circles in Fig. 4. In Fig. 4(a)
we have indicated regions analogous to Regions
A-C of Fig. 3(a). Fig. 4(b) is a magnification of the
section marked by a two-sided arrow in Fig. 4(a).
The region of 125 steps we attempted to pattern is
marked. The solid line in Fig. 4(b) shows the
predicted linear response of the surface to the de-
signed source. Inside the patterned region it is very
similar to the desired pattern. Near the source
(x/¢ =1200), the shape of the surface obtained
from the numerical solution of the step equations
of motion closely follows the linear dynamics.
Further from the source, nonlinearity acts and we
observe a regular sequence of grooves which are
recognizably “‘echoes” of the original pattern for
many periods. We have checked that this behavior
is robust in the presence of deposition shot noise.

In a typical experimental system the dispersion
relation is not known. Nevertheless, one can in
principle investigate the response of the step sys-
tem to sources of different frequencies experimen-
tally. For each frequency, one can measure the
induced wavelength (gz) and amplification rate
(¢7), as well as the pre-factor multiplying the ex-
ponential in Eq. (7). This information is sufficient
for the implementation of the design procedure
outlined above.

In summary, we have demonstrated the con-
vective nature of a step bunching instability that
occurs in a recently proposed model of epitax-
ial, strain-induced, step-flow growth. A variety of
step-bunching scenarios arise when conventional
step flow is perturbed by a beam of atoms whose
flux can be controlled as a function of space and
time. In particular, there is a regime of time-perio-
dic bunching that can be used to launch a sequence
of pre-designed step-bunch patterns. The nonlin-
earity of the model is such that the bunches do not
distort appreciably as growth proceeds.
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