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Abstract

A fluid layer driven out of equilibrium by both a thermal gradient and time-

periodic vertical oscillations displays a number of interesting behaviour. Here

we review results from the first experimental investigation of this system as

well as a number of related and novel numerical findings. At primary onset

these results include modulation-enhanced conduction stability as well as fluid

motion in either harmonic or subharmonic resonance with the drive frequency.

In the nonlinear parameter range we find a wide variety of singly resonant

states, a region where both temporal responses coexist, and a number of novel

coexistence patterns–including quasiperiodic crystals and superlattices. Four-

wave interactions between harmonic and subharmonic modes are shown to

select the structure of these complex patterns. The role of inversion symmetry

in the emerging planforms is discussed.

M This article features multimedia enhancements available from the abstract

page in the online journal; see www.iop.org.

1. Background

Two of the most commonly studied examples of nonequilibrium pattern forming systems are

drawn from hydrodynamics: a fluid layer with an imposed vertical temperature difference

(Rayleigh–Bénard convection [1, 2]) and an open dish of vertically oscillated fluid (Faraday

surface waves [3]). These systems have substantial differences, for example, the basic pattern

formation mechanisms, as well as important similarities, including the role of symmetry in

selecting the planform near onset. Many of the characteristics that are distinctive to patterns in

either Rayleigh–Bénard convection or Faraday surface waves can be found in a single system:

a fluid layer driven by both a vertical temperature difference and sinusoidal vertical oscillations

(figure 1). This paper is intended to give the reader an introduction to pattern formation in

vertically oscillated convection. More detailed treatment of the topics reviewed here may be

found in the cited references.

One important distinction between Rayleigh–Bénard convection and Faraday surface

waves is the mechanism which selects a pattern’s lengthscale. At onset in a Rayleigh–Bénard
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Figure 1. Fluid motion in the layer of depth d is driven both by the imposed temperature difference

1T = T2−T1 and the vertical oscillations δ′ cos ω′t . In addition to the Rayleigh–Bénard convection

parameters of Pr and R, this system is characterized by two nondimensional modulation parameters

δF r and ω (see text).

apparatus the emerging buoyancy driven pattern is stationary with a wavenumber q = qc

determined by geometric constraints [4]. In particular, qc is directly proportional to the inverse

of the fluid layer depth d (figure 1). In contrast, persistently time-dependent Faraday surface

waves are driven by vertical oscillations, often sinusoidal, with a drive period τ . This time-

dependent driving is a form of parametric modulation and leads to wavenumber selection by

the forcing frequency, which is related to the dispersion relation of the waves.

Communality between the two systems is reflected in the role of pattern symmetries near

onset. In this parameter region the behaviour of exponentially growing linear modes is cap-

tured by equations for the spectral mode amplitudes A, whose terms must satisfy spatial and

temporal symmetries. These constraints are important since nonlinear terms in these equations

correspond to the competition and interactions between emerging modes and, thus, dictate the

pattern planform. When the approximation of inversion symmetry is valid, amplitude equa-

tions are invariant under the inversion A → −A, causing even order terms to be excluded and

thereby strongly influencing the pattern structure. Inversion symmetry in Rayleigh–Bénard

convection takes the form of spatial invariance under vertical reflection about the fluid layer

midplane (Boussinesq symmetry). If this symmetry is approximately present, stripe (convec-

tion roll) patterns are typically observed at onset, while in the absence of this symmetry

hexagons form. In contrast, inversion symmetry in Faraday waves is temporal, namely, invar-

iance under discrete time translation by τ and displayed in the subharmonic (periodic at 2τ )

waves frequently observed near onset. Stimulating a harmonic response in the surface waves—

by using thin layers, a viscoelastic fluid, or multiple oscillation frequencies—causes a breaking

of this symmetry.

The majority of pattern formation studies in Rayleigh–Bénard convection, Faraday surface

waves, as well as other nonequilibrium pattern forming systems have focused on the cases

when a single q is accessible at onset [2]. By allowing for multiple and distinct accessible

wavenumbers near onset, recent investigations have extended this focus and, in the process,

found a number of exotic patterns including quasiperiodic crystals, superlattices, and domain

coexistence [5]. Many of these patterns display complex spatial structures, often on distinct

lengthscales, described by relatively few spectral modes. Due to these characteristics, Pismen

[6] has designated such patterns as complex order. Classification of these states can be refined

to quasiperiodic crystals and superlattices using criteria given by Lifshitz [7]. The essential

difference between quasiperiodic crystals and superlattices is the number of basic (indexing)

vectors required to map out the dominant spectral modes. If the number of indexing vectors is

greater than the spatial dimension of the pattern (two in the present case), then the complex state

is a quasiperiodic crystal. A superlattice exists when the number of indexing vectors equals

the pattern’s spatial dimension. Quasiperiodic crystals and superlattices have been reported in

other hydrodynamic [8–13] and optical systems [5, 14, 15] where quasiperiodic crystals have

been termed quasipatterns and quasicrystals. The majority of these studies involve Faraday

surface waves where degeneracy of the dispersion relation translates into two distinct classes

(harmonic and subharmonic) of wavenumbers that can be simultaneously excited. In most
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cases three-wave spectral mode resonances (resonant triads) are the formation mechanism for

complex-ordered patterns. We will show that complex order also forms in vertically oscillated

convection; however, in this system such patterns arise from four-wave resonances (resonant

tetrads). Moreover, themathematical description of these patterns is free of the approximations

required for Faraday systems. Vertically oscillated convection also permits easy selection of

different interacting lengthscales from a range of wavenumbers, thereby allowing flexibility

in the spectral resonances which form.

Vertically oscillated convection is described by four nondimensional parameters: two

from Rayleigh–Bénard convection and two from parametrically driven systems. A Rayleigh–

Bénard convection experiment (no vertical oscillations) of infinite lateral extent is described

by the Boussinesq equations which contain two nondimensional parameters: Rayleigh number

R and Prandtl number Pr. These are defined,

R =
αgd31T

νκ
and Pr =

ν

κ
, (1)

in terms of 1T (figure 1), gravitational acceleration g, d , thermal diffusivity κ , kinematic

viscosity ν, and thermal expansivity α. In Rayleigh–Bénard convection R characterizes

the strength of the thermally induced buoyancy forces driving the fluid system away from

equilibrium. Intrinsic scales in the system are d and the vertical diffusion time (tv = κ/d2).

In our compressed gas convection experiments, d ≈ 0.6mm and tν ≈ 1.6 s. Imposing vertical

oscillations of the form δ′ sinω′t on Rayleigh–Bénard convection [16,17] simply adds a time-

periodic term to the gravity constant in the Boussinesq equations, requiring two additional

nondimensional (modulation) parameters to describe the complete driving in the system. These

are the displacement amplitude δF r and modulation frequency ω:

δF r =
κ2

d4g
δ′ and ω =

d2

κ
ω′, (2)

where δ′ is the dimensional displacement amplitude andω′ is the dimensional angular frequency

of oscillation. It is important to note that unlike theFaradaywave system, there is no free surface

in our studies of vertically oscillated convection; the time-dependent acceleration in our system

couples to temperature-induced density differences in the flow. The experimental devices and

numerical methods used in this investigation have been described elsewhere [18–20].

2. Primary onset and singly resonant patterns

In the current system the uniform conduction state competes with temporally modulated

convection over a wide range of parameter values. Our studies focus on this competition

for the case of fixed Pr and ω. By varying the remaining control parameters δF r and R over

a range where R is not too large, conduction is found to lose stability to flows with either

a harmonic or subharmonic temporal response. Intuitively, vertically oscillated convection

can be understood by analogy with an inverted pendulum mounted on a vertically oscillating

base. The vertical oscillations are included as a time-periodic term in the gravity (parametric

modulation). This analogy can be made more quantitative by an approximate mapping of

the Boussinesq equations onto a Mathieu equation. Previous investigations of vertically

oscillated convection have used this analogy [16], as well as numerical Galerkin methods [17],

to perform linear stability analyses predicting that harmonic and subharmonic fluid motion

occur at distinct spatial scales. Our own linear stability analysis is found to be in agreement

with the previous work. Essential results from these analyses are that harmonic flows are

more stable than unmodulated convection, i.e. the critical Rayleigh number Rc for harmonic

convection (RH
c ) is expected to be larger than theRc in the absence ofmodulation (R

0
c = 1708).
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In contrast, subharmonic flows may be either more stable (RS
c > R0c ) or less stable (R

S
c < R0c ).

For R > 0 the critical wavenumber of harmonic patterns qH
c is significantly less than the

critical wavenumber of subharmonic patterns qS
c . Linear stability curves for harmonic and

subharmonic onsets bisect at a bicritical point where both qH and qS are accessible. In

previous papers we have confirmed these linear stability predictions with experiments for both

Rc and qc [21,22] at fixed Pr = 0.930 and ω = 98.0 as well as the temporal responses [19] of

both harmonic and subharmonic patterns.

Purely harmonic patterns occur when the parametric driving is relatively small, and they

are qualitatively similar to states observed in Rayleigh–Bénard convection. Near primary

onset, the observed pattern depends on both the validity of the Boussinesq symmetry and

the magnitude of sidewall forcing. As long as 1T is not large, the Boussinesq symmetry

is valid and a striped state is found near onset. If the sidewalls result in relatively weak

forcing parallel stripes (figure 2(a)) are the striped state. When the sidewall forcing is stronger

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2. Representative purely harmonic ((a)–( f )) and purely subharmonic ((g)–(l)) patterns

observed in experiments for Pr = 0.93, unless noted otherwise. Near harmonic onset (a) parallel

stripes (R = 4529, δF r = 3.49 × 10−4, and ω = 98.0), (b) targets (Pr = 0.924, R = 4050,

δF r = 3.59 × 10−4, and ω = 98.5), and (c) hexagons (R = 4858, δF r = 3.62 × 10−4,

and ω = 98.1) occur. Away from onset parallel stripes (d) display defects (R = 3926,

δF r = 3.36× 10−4, and ω = 98.4) and sufficiently into the harmonic convective region (e) spiral

defect chaos (R = 4384, δF r = 2.59 × 10−4, and ω = 96.2) forms. Similar states ( f ) are

observed with square sidewalls (Pr = 0.893,R = 5025, δF r = 3.17×10−4, andω = 99.7). Near

subharmonic primary onset (g) parallel stripes (R = 4857, δF r = 3.74 × 10−4, and ω = 97.9),

(h) giant spirals (R = 4108, δF r = 4.12×10−4, and ω = 97.9), and (i) giant convex disclinations

(R = 4385, δF r = 4.31 × 10−4, and ω = 96.2) are found. Away from onset ( j) transverse

modulated stripes (R = 6128, δF r = 4.33×10−4, andω = 95.0) and (k) radial stripes (R = 6639,

δF r = 4.31 × 10−4, and ω = 95.1) are common. Similar results are observed with (l) square

sidewalls (Pr = 0.894, R = 5037, δF r = 4.40× 10−4, and ω = 99.8).
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Figure 3. Slices of parameter space for fixed Pr = 0.930 and ω = 98.0. Part (a) shows general

pattern regions observed in experiments while (b) focuses on the coexistence region. Linear

stability predictions for the onset of temporal modulated flows from the conduction state are

shown: (——) harmonic and (- - - -) subharmonic. Observed onsets of coexistence in experiments

from pure harmonic (♦) and pure subharmonic patterns (△) are shown in (b). Boundaries for

complex order determined in experiments ( ) are in agreement with simulations for R > 6280;

for comparison, boundaries found in simulations (¤) are shown at R ≈ 6300. Simulations find

complex order extends down to the bicritical point [19, 24], while experiments find patterns (•)
with mixed harmonic cellular symmetries (see [21, 22]).

targets form. Both light core (figure 2(b)) and dark core [22] targets are observed. If the

Boussinesq symmetry is not valid, hexagons form at onset (figure 2(c)). Under the conditions

of our experiments [19] hexagons are observed only in the vicinity of the bicritical point

(figure 3(a)), where1T is several times larger than the onset value required in the absence of

vertical oscillations.

Each type of harmonic onset planform (parallel stripes, targets, and hexagons) displays

a different route to a common complicated state as the experiment moves away from onset

and into the harmonic parameter region. While onset planforms are relatively regular, various

kinds of irregularities or defects form as the system moves away from onset. Parallel stripes

display dislocations and curvature about two sidewall foci (figure 2(a)). Continuing away from

onset, the number of dislocations and the stripe curvature increase resulting in amplitude grain

boundaries, as shown in figure 2(d), as well as additional sidewall foci. Sufficiently far from

onset, spiral defect chaos (figure 2(e)) forms. In contrast, a target will begin this transition as

a defect propagates to the target centre creating a one-arm spiral. Moving away from onset

additional defects enter the spiral resulting in more arms at the centre (as many as six-arm

spirals are observed in experiments). The spiral core will begin to move off centre [22] and the

number of defects will increase. Eventually, the spiral core will annihilate with the sidewalls

and again spiral defect chaos will form. Lastly, regular hexagons break down to bistable

domains of stripes and hexagons relatively close to onset. The stripes will then fill the pattern

and the transition to spiral defect chaos proceeds as it does for the case of parallel stripes at

onset. Each of these onset planforms and transitions to spiral defect chaos are qualitatively

similar to those reported for Rayleigh–Bénard convection. Further into the harmonic parameter

range, spiral defect chaos breaks down as clumps of islands and stripes form throughout the

experiment (see figure 8(d) in [22]). Qualitatively similar harmonic patterns to those described

also occur in experiments using square lateral sidewalls. As expected [23] this includes a bulk

phenomenon like spiral defect chaos (figure 2( f )).
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At subharmonic onset, temporal inversion symmetry rules out the formation of hexagons

and correspondingly only striped patterns are found. In most cases, parallel stripes emerge

(figure 2(g)), although significant sidewall forcing can result in spirals (figure 2(h)). Near

onset, dislocations and giant convex disclinations (see figure 2(i)) are commonly found.

Moving away from onset more point defects in the forms of dislocations and disclinations enter

the subharmonic patterns until the abrupt emergence of transverse modulations (figure 2( j))

that propagate from the sidewalls down the length of the stripes. Two as well as three

sidewall foci [22] are common in transverse modulated stripes. Continuing through the

region of transverse modulations (figure 3(a)) the base stripe pattern gradually breaks down

as radial stripes form (figure 2(k)). Eventually, the radial stripes undergo instability and

all discernible structure is lost to plumes that form throughout the experiment. With square

sidewalls parallel stripes (figure 2(l)) are commonly observed both near and away from primary

onset.

3. Coexistence and complex order

Coexisting harmonic and subharmonic modes interact to form several novel patterns in the

coexistence parameter range. Coexistence patterns are found over a wide parameter range

bounded by harmonic and subharmonic linear stability curves (figure 3) for conduction.

Generally, these patterns can be divided into three broad classes: harmonic dominated,

subharmonic dominated, and those with relatively equal power spectrum contributions from

both temporal responses (figure 4). Harmonic dominated coexistence occurs near the harmonic

parameter region; to the left of the bicritical point in figure 3(a). Moving from harmonic

patterns into coexistence, subharmonics do not emerge as soon as the subharmonic marginal

stability curve is crossed, rather coexistence is delayed until well into the parameter region

as shown in figure 3(b) [18, 19, 24]. Initial subharmonic formations are localized as stripes

pinned perpendicular to the sidewalls or forming as patches about defects in the harmonic

pattern [18, 19]. Moving further into the coexistence region subharmonic stripes begin to

form perpendicular to the base harmonic stripes (figure 4(a)). The harmonic component in

these patterns contributes more than 60% of the pattern’s total spectral power at an average

wavenumber qH approximately the same as that of nearby purely harmonic states. The

subharmonic contribution to the patterns grows slowly over this parameter region and is at

an average wavenumber qS that is larger than that of purely subharmonic patterns [18, 22].

Subharmonic dominated coexistence occurs near the subharmonic parameter region

(figure 3). In contrast to the previously described harmonic-coexistence boundary, harmonics

emerge in the immediate vicinity of the harmonic marginal stability curve and are found

to be present throughout the subharmonic base state (figure 4(b)). In our experiments the

boundary, shown in figure 3(b), could only be reliably determined for R < 5500. For

larger R the subharmonic patterns possessed transverse modulations whose wavenumbers

are approximately qH , causing reliable detection of the transition to not be possible using

the spectral techniques we employed. The emerging harmonic component typically forms

parallel stripes containing several domains of different orientations. With the emergence of a

harmonic component qS gradually increases from its value at the transition to coexistence. At

this subharmonic-coexistence boundary qH is again similar to the values displayed by purely

harmonic and coexistence patterns near the harmonic-coexistence boundary. Moving further

into the coexistence region, qH steadily decreases.

Sufficiently far into the coexistence parameter region spectral power contributions from

harmonic and subharmonic patterns abruptly become relatively equal and complex-ordered

patterns form. A fewwell-defined wave vectors will begin to dominate the power spectrum qH
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(a) (b)
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Figure 4. Comparison between representative coexisting patterns at Pr = 0.93 observed in

experiments ((a)–(c)) and simulations ((d)–( f )). Harmonic dominated coexistence (a) atR = 6679,

δF r = 3.50 × 10−4, and ω = 97.9. Subharmonic dominated coexistence (b) at R = 6660,

δF r = 3.76 × 10−4, and ω = 97.9. Square quasiperiodic crystal (c) displaying domains with

different orientations at R = 6560, δF r = 3.55 × 10−4, and ω = 98.1. Harmonic dominated

coexistence (d) at R = 6600, δF r = 3.54 × 10−4, and ω = 98.0. Subharmonic dominated

coexistence (e) at R = 6800, δF r = 4.061 × 10−4, and ω = 98.0. Square quasiperiodic crystal

displaying two orientation domains ( f ) at R = 6600, δF r = 3.748× 10−4, and ω = 98.0.

reaches its minimum value while qS attains its maximum [19]. Initially these patterns display

domains of ordered structures with various orientations (figure 4(c)). Near the formation of

complex order (figure 3(b)) the domains continually change as defects emerge and annihilate,

altering the domain orientations. All the experimental patterns described in these transitions

are reproduced in our simulations of the Boussinesq equations; examples at similar parameter

values to the experimental patterns are shown in figures 4(d)–( f ).

Moving further into the parameter region of complex order (figure 3(b)) and away from

the transition boundary the ordered domains coalesce into a single domain. As expected

in this laterally isotropic system the single domain displays no preferred orientation. An

example of a square superlattice found in simulations with periodic boundary conditions is

shown in figure 5(a)4. This pattern is a superlattice since the harmonic and subharmonic

spectral modes only require two indexing vectors to map out the dominant modes (i.e. the

pattern could be placed on a torus in such a way that it would be cyclic). In fact, this

square superlattice is periodic against translations by two lattice sites in the square (harmonic)

sublattice. Qualitatively similar patternswhich requiremore than two spectral indexing vectors

are observed in experiments (figure 5(b)), we refer to these patterns as square quasiperiodic

crystals5. Experiments find only quasiperiodic crystals in patterns of this type and we have

4 An MPEG movie is available from stacks.iop.org/Non/16/C1.
5 An AVI movie is available from stacks.iop.org/Non/16/C1.
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Figure 5. Complex-ordered patterns observed at Pr = 0.930 result from four-wave resonances

between harmonic and subharmonic spectral modes. Square superlattice (simulation) (a) at

R = 4750, δF r = 3.75 × 10−4, and ω = 98.0. Experiments find a square quasiperiodic crystal

(b) at R = 7030, δF r = 3.88 × 10−4, and ω = 95.3. Both patterns display qualitatively

similar spectral structure composed of four harmonic and eight subharmonic modes (c). Rhombic

quasiperiodic crystal (experiment) (d) observed at R = 5180, δF r = 8.92× 10−4, and ω = 50.4.

Qualitatively similar patterns found in simulations (e) at R = 3800, δF r = 16.74 × 10−4, and

ω = 33with a characteristic spectral structure ( f ) composed of four harmonic and four subharmonic

modes. Weakly violating spatial inversion symmetry of the layer about the midplane produces a

(g) hexagonal quasiperiodic crystal (simulation) at R = 4750, δF r = 3.75× 10−4, and ω = 98.0.

Note that (a) and (g) form at the same parameter values; (a) if Boussinesq symmetry is imposed

and (g) if it is violated. Another form of the (h) square quasiperiodic crystal (simulation) is found

at R = 7800, δF r = 1.167 × 10−4, and ω = 300, in this case displaying 4 harmonic modes and

12 subharmonic modes (i).

not investigated if the existence of superlattices in the experiment is prevented by finite size

effects from the lateral sidewalls.

Pattern and spectral structures in the vicinity of the complex order transition

help reveal the mechanism producing these states. Unlike the majority of previously
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reported complex-ordered patterns that result from three-wave resonances, all the observed

quasiperiodic crystals and superlattices in this system rely on qualitatively different four-wave

resonances (resonant tetrads) to form. These resonant tetrads always involve two harmonic

and two subharmonic modes (figures 5(c), (f ), (i)). Just prior to the formation of complex

order, away from the bicritical point, coexistence patterns are quite complicated and display

substantial disorder. Power spectra for these patterns possess two evenly populated rings, one

at each wavenumber. As the transition to complex order begins, power in these q rings is

drawn into sets of spectral modes satisfying well-defined resonant tetrads. These conditions

as well as definitions for quasiperiodic crystals and superlattices in this system are presented

in [19]. Patterns present after this transition, while still complex, are considerably more

ordered. Our experiments and simulations are in quantitative agreement for the boundaries of

complex-ordered patterns when R > 6280.

While Boussinesq simulations find that complex-ordered patterns bifurcate supercritically

from both conduction and singly resonant patterns near the bicritical point [18], experiments

find complicated coexistence patterns containing hexagons in the harmonic sublattice.

Increasing R to move away from bicriticality simulations find complex order, including

additional patterns [18, 19], over a widening range of δF r [24] up to R ≈ 6280, where

this parameter range agrees with experiments (figure 3(b)). In contrast, experimental patterns

[19, 21] over this range contain fewer hexagons in the harmonic component with increasingR,

but are unable to form complex-ordered states. Simulations that account for weak violations

of Boussinesq symmetry find quasiperiodic crystals with a hexagonal harmonic component

(figure 5(g)).

A variety of other complex-ordered patterns [18,19]6 exist atω values away fromω ≈ 100

(figures 5(d), (e), and (h)), in part, because qS is strongly dependent on ω. In addition to the

examples shown in figure 5, other patterns have been reported [18, 19] for the cases of both

different ω values as well as −R values. Negative Rayleigh numbers (−R) correspond to

physically heating from above, where qH > qS . We did not perform any experiments for

these cases. All the quasiperiodic crystals and superlattices observed in experiments and

simulations satisfy appropriate resonant tetrad conditions.

4. Conclusion

In conclusion we have used simulations and the first experiments of vertically oscillated

convection to confirm linear stability predictions and investigate the patterns that form in the

nonlinear parameter region. Experiments with significant dynamical range require thin layers

with the appropriate physical characteristics and were not feasible prior to the development

of the compressed gas convection apparatus. We find that singly resonant harmonic patterns

displaymany of the characteristics of Rayleigh–Bénard convection, including the wavenumber

being strongly dependent on geometry (d). In contrast, singly resonant subharmonic patterns

display a wavenumber that is strongly dependent on ω as well as a time dependence that is

characteristic of parametrically driven systems. In this sense, vertically oscillated convection

is a composite of two well-studied pattern formation systems: Rayleigh–Bénard convection

and Faraday waves. Over a wide parameter range we find that harmonic and subharmonic

patterns are bistable. A number of novel coexistence patterns as well as the first examples

of quasiperiodic crystals and superlattices in convection were reported. Resonant four-wave

interactions between the temporal responses are found to be the formation mechanism of the

quasiperiodic crystals and superlattices. After our initial report [24] of four-wave resonances

6 An MPEG movie is available from stacks.iop.org/Non/16/C1.
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producing complex order, resonant tetrads were also reported in Faraday experiments [12].

However, the majority of reported complex-ordered patterns rely on qualitatively different

three-wave resonances. Our results suggest that there are a number of interesting patterns and

transitions accessible in vertically oscillated convection. We have focused primarily on only

one combination of Pr and ω and our initial trials at other values suggest that many interesting

questions remain to be addressed in this system.
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