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Supercritical Transition in Plane Channel Flow with Spatially Periodic Perturbations
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Laboratory experiments and numerical simulations have been conducted for plane channel flow with a
streamwise-periodic array of cylinders. The primary transition in this open flow occurs as a convective
rather than absolute instability and leads to traveling-wave packets, which advect out of the system. The
ordered secondary state is characteristic of closed flows, in contrast with other open flows where the pri-
mary transition often leads directly to turbulence.

PACS numbers: 47.20.Ky, 47.20.Ft, 47.60.+i

The transition to turbulence has been most successful-
ly described in closed Auid flows, such as Aow between
concentric rotating cylinders (Couette- Taylor flow),
where fluid never advects out of the system. As a control
parameter (e.g. , Reynolds number R) is increased, a
laminar closed Aow typically becomes weakly turbulent
only after the appearance of several intervening nontur-
bulent states, each of which is stable for a range of R
and is spatially and temporally more complex than
preceding states. This gradual progression toward tur-
bulence has enabled detailed comparisons between
theory and experiment. ' In contrast, for open Auid

flows, where fluid advects out of the system, connecting
theory with experiment has been more difficult because
these flows typically undergo a direct transition from
laminar behavior to turbulence with complex spatial and
temporal intermittency. For example, in laminar plane
channel flow, linear theory predicts instability to two-
dimensional traveling waves at a critical value of Rey-
nolds number, R, =5772.22, while experiments exhibit
a subcritical (hysteretic) transition to turbulence for R
as low as about 1000. Though nonlinear stability theory
partially explains this behavior and numerical simula-
tions suggest mechanisms for transition, the primary-
transition Reynolds number eludes prediction because of
the high-dimensional nature of the secondary Aow.

In this Letter, we present laboratory evidence for a su-
percritical (continuous) primary transition in a plane
channel Aow with spatially periodic geometrical pertur-
bations. Our experiments and numerical simulations
yield a value for R, that is more than an order of magni-
tude smaller than for plane channel Aow without pertur-
bations. Previous numerical studies indicated that the
reduction in R, arises from destabilizing inflectional ve-
locity profiles introduced by the perturbations and that
the transition leads to two-dimensional traveling waves
resembling the linear modes of the unperturbed case.
These waves, which grow from zero amplitude at R„are
stable against two- and three-dimensional disturbances,

unlike the unperturbed case where a subcritical transi-
tion leads to finite-amplitude modes that are stable to
two-dimensional disturbances but unstable to three-
dimensional disturbances. Recent experimental heat-
transfer studies observed the onset of traveling waves
near values of R, predicted by numerical simulation, but
no quantitative comparisons to hydrodynamic stability
predictions were made. Further, these numerical and ex-
perimental studies did not distinguish between instabili-
ties that are absolute (growing in time in any reference
frame) or convective (growing in time only in a comov-
ing frame); these concepts are important in understand-
ing transitions in open and closed Auid Aows. We
demonstrate that the supercritical primary transition
arises from convective instability.

Figure 1 depicts a plane channel flow that is geometri-
cally perturbed by an infinite number of cylinders in a
spatially periodic array. ' The channel half-depth h and
the velocity Uo are used to scale length, velocity, time t,
and growth rate o. Uo is defined as 2 times the stream-
wise velocity averaged in the cross-channel direction; in
the unperturbed case Uo is equal to the velocity at y =0,
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FIG. 1. Our geometry of plane channel flow with spatially
periodic geometric perturbations, defined in units of the chan-
nel half-depth h by the streamwise cylinder spacing L =6.66,
the cross-channel cylinder location y,„~= —0.50, and the
cylinder diameter d=0.40. The streamwise velocity is u and
the cross-stream velocity is U. For the experiment, the span-
wise dimension z (perpendicular to the figure) ranges from
—20 to 20; the simulation is two dimensional.
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but in the perturbed case this need not be true. The
Reynolds number is defined as R =Uph/v, where v is the
kinematic viscosity.

The experiment is performed in a water channel with
b =0.794 cm and with 21 cylinders, which approximate
an infinite periodic array. Cylinder number 1 (number-
ing from upstream to downstream) lies a distance of 160
downstream from the channel inlet; the unperturbed
Aow approaches a parabolic profile in a length ' D
=0.11Uph/v(20 for the range of R investigated. The
experiment maintains constant-mass-Aux inflow-outflow
boundary conditions in x (streamwise). The Auid tem-
perature is controlled to +0.1 C and the root-mean-
square velocity Auctuation (noise) is typically 0.04% of
Uo. Streamwise velocities u are measured by laser-
Doppler and hot-film velocimeters; a separate laser-
Doppler velocimeter measures Uo at x = —10.1

upstream of cylinder number 1, y =0, and z = —5.1.
The simulations are performed on a 32-processor Intel

Hypercube using a spectral element spatial discretiza-
tion. " Two cases of constant-mass-Aux streamwise
boundary conditions are considered: periodic with a sin-

gle cylinder and inAow-outAow with nine cylinders. For
the periodic calculations we impose u(O, y) =u(L,y),
U(O, y) =U(L,y) for velocity and p(O, y) -p(L,y) for
pressure; a time-dependent body force corresponding to a
mean pressure gradient maintains constant mass Aux.

For the inflow-outflow calculations, constant mass flux is
specified by a parabolic velocity profile at the inAow;

du/dx =dv/dx =p =0 are maintained at the outflow.
In both the experiment and the simulation the primary

transition is studied by intentionally disturbing the Aow.

In the experiment the disturbance in the mean velocity is
a square pulse occurring everywhere down the channel
with amplitude 0.3-0.6 and duration 2.5-4.5. The simu-
lation starts from the equilibrium solution for the geome-
trically unperturbed Aow; this initial condition causes
spikes in velocity of amplitude =0.2. In both cases
(Fig. 2), the initially broadband global disturbance
evolves quite rapidly to a single oscillatory mode in time.
This behavior holds for a range of R and suggests that
the transition near R, is a Hopf bifurcation, ' where the
modulus Ao of the mode obeys the relation

dip/dt = crAp —gAp,

where cr—s—= (R —R, )/R, . ' (Since the geometry has
no translational symmetry, there is no comoving frame
where the transition can be viewed as a steady-state bi-
furcation. ) For the range of e considered here, we as-
sume (1) to be valid without higher-order corrections
and to correspond to a fixed wave number.

For R slightly less than R, and Ao small, the nonlinear
term in (1) is neglected as t becomes large; Ap(t) ap-
proaches apexp(ot). In the period after the broadband
behavior of the disturbance (e.g. , t & 30 for Fig. 2), ve-

locity time series for several values of R are fitted by
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FIG. 2. Time series of Auid velocities in the laboratory ex-
periment (top trace) and the numerical simulation (bottom
trace) for similar subcritical values of R. Streamwise velocity
u in the experiment was measured by a laser-Doppler velocime-
ter at x=3.9 downstream of cylinder number 18, y =0, and
z = —5.1 for R =110.5. Cross-stream velocity U in the simula-
tion with streamwise-periodic boundary conditions was record-
ed at x =1.6666 and y =y,„]=—0.5 for R =115.0. All quanti-
ties are dimensionless —see text.

b+apexp( crt) sin( cot +p) with b, ap, o, co, and p as free
parameters. Extrapolating a linear regression fit of o. vs

R to zero growth rate, we estimate R, =128.5+ 0.3 for
the experiment and R, =136.0~0.6 for the simulation
[Fig. 3(a)]. The error bounds indicate the precision of
R„but possible systematic errors limit the accuracy of
the R, values to + 5%.

For R slightly greater than R„asingle mode still
evolves from the initial broadband behavior, but the
modulus of the mode increases and approaches a limiting
value, as in a supercritical Hopf bifurcation [g & 0 in

(1)]. With dip/dt =0 in the long-time limit of (1), the
nonlinear saturation of Ao scales as c' . Furthermore,
the nonlinear self-interaction of Ao generates harmonics
A„that scale as e "+' for small e. For several values
of R, velocity time series in the period where the single
mode was saturated are fitted by

b

+pepsin(cot

+pp) +r41 sin(2cot +pi ),
with b, Ap, Ai, co, pp, and pt as free parameters. With
R, =128.5 for the experiment and R, =136.0 for the
simulation, linear regression fits of Ao and A] vs e yield
exponent estimates of 0.53 ~ 0.01 for A 0 and 1.00
+ 0.02 for Ai in the experiment, 0.59+ 0.05 for Ao and
1.1 ~0.1 for Al in the simulation [Fig. 3(b)]; the error
bounds of Ao and A

&
were found by varying R, by + 1

standard deviation and repeating the linear regression
analysis.

In Fig. 4 simultaneous velocity data at two spatial
points in the experiment illustrate that the transition
arises from convective instability. Initially both time
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FIG. 4. The convective nature of the transition observed in
the experiment is illustrated by these simultaneous measure-
mens ots of velocity at two spatial points for R =151.2. The
upper trace was recoas recorded from a hot-film velocimeter at x = .
downstream of cylinder number 10, y —,and z =16.8, and the
lower trace was recorded from a laser-Doppler velocimeter at
x =3.9 downstream of cylinder number 18, y =0, and
z = —5.1.

FIG. 3. (a) Growth rates o below transition and (b) satura-
tion amplitudes of the first two Fourier components, Ao and
A i, above transition are compared for u from the experiment at
x =3.9 downstream of cylinder number 18, y =0, and z = —5.1

(a) and for v from the simulation (streamwise-periodic bound-
ary conditions) at x =1.6666 and y = —0.5 (0).

series evolve similarly; however, after sof me time u at the
upstream probe (top trace, Fig. 4) becomes steady while
u at the downstream probe (bottom trace, Ftg. 4) contin-
ues to grow. Eventually, u at the downstream probe also
becomes steady as the tail of the wave packet advects
past the downstream probe and out of the experiment.
The wave packet's time of flight through the experiment
limits the observation time for growth rates with e(0
and for saturation amplitudes with e) 0. %ithout im-
posed disturbances we first observe unsteadiness in the
form of weak intermittent oscillations for R well above
R„.studies of models' with convective instabilities sug-
gest that these oscillations are triggered by backgroun
noise.

~ ~ ~ ~

Simulations are conducted with streamwise-periodic
boundary conditions to model the primary transition us-
ing (l); however, since periodicity prevents distinguish-
ing between absolute and convective instability, simu a-
tions are also conducted with streamwise inflow-outflow
boundary conditions (Fig. 5). As in the experiment, the
initial disturbance rapidly evolves into a wave packet
consisting of two waves per rod spacing and subsequent y
advects out of the flow domain. Despite the diff'erent
boundary conditions for the two types of simulations, a
direct comparison of the flow fields starting from the
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~ ~FIG. 5. Transition arising from a convective instability in

the simulation with nine cylinders and inflow-outflow stream-
wise boundary conditions is illustrated by a plot of v at 200
evenly spaced x locations with y =0.395 for 162 consecutive
time intervals at R =160. The lightest regions indicate the
largest velocities. The streamwise locations of the cylinders
(light bands parallel to the time axis) are indicated by the x
dependence of the steady v due to flow past the cylinders.

same initial conditions demonstrates that a velocity time
series at a given point in space evolves identically in time
until the wave-packet tail, whose width in time is—DjUo, advects past the inflow-outflow simulation.

The present work demonstrates the relevance of super-
critical nonlinear models like (I) to transitions arising
from a convective instability in a channel flow. Previous
experiments in open flow past a single cylinder have
shown the primary transition in that system is a Hopf bi-
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furcation; however, the resulting von Karman vortex
street is governed by an absolute instability in the near
wake. ' In addition, in Bow past a cylinder the Strouhal
number (oscillation frequency scaled by a velocity and a
length) shows a strong dependence on R near R, with
e& 0. ' In contrast, the Strouhal number in our study is
0.195 ~0.002 for the experiment and 0.188 ~0.001 for
the simulation, nearly independent of R and in reason-
able agreement with the Strouhal number from linear
theory for the geometrically unperturbed case (0.180 at
R =130). ' Future investigation of the ordered secon-
dary flow should include the study of bifurcations to
higher instabilities and to turbulence. Connections be-
tween dynamical systems theory and transitions in the
unperturbed case may be revealed by varying the geome-
trical parameters that define the spatially periodic per-
turbations in this problem. '
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