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Secondary Instability in Plane Channel Flow with Spatially Periodic Perturbations
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Laboratory experiments on plane channel flow with a streamwise-periodic array of cylinders reveal a
bifurcation from two-dimensional traveling waves to three-dimensional spanwise standing waves. The
standing waves select a wave number that is independent of the wave number imposed initially by time-
periodic disturbances. The stable tertiary flow stands in contrast with most open flows where instability

develops directly to turbulence.

PACS numbers: 47.20.Ky, 47.20.Ft, 47.35.+i, 47.60.+i

The onset of three-dimensional motion is an important
stage in the transition to turbulence for open flows, where
fluid advects through the system [1,2]. Typically, three-
dimensional behavior grows from two-dimensional waves
that arise from the primary instability [3], but distin-
guishing separate stages is difficult because open flows
generally do not equilibrate at finite amplitude after each
instability. Instead, successive instabilities lead directly
to turbulence as the flow develops downstream [4]. How-
ever, states that are stable for a range of control parame-
ter (e.g., Reynolds number R) have been recently found
in open flows that contain spatially periodic geometric
perturbations [5-7]. A laboratory experiment and nu-
merical simulation on a spatially perturbed plane channel
demonstrated that the primary instability can occur as a
supercritical (continuous) Hopf bifurcation to stable
two-dimensional traveling waves [7]. A supercritical pri-
mary transition often occurs in closed flows, where fluid
never advects out of the system (e.g., Couette-Taylor flow
or Rayleigh-Bénard convection). In contrast to most
open flows, a sequence of well-separated transitions in
closed flows lead to ordered (nonturbulent) states beyond
the primary instability.

In this Letter we present evidence from laboratory ex-
periments for a secondary transition leading to a stable
ordered state in the open flow through a spatially per-
turbed plane channel. Our results suggest that open flows
can exhibit a sequence of bifurcations to stable nontur-
bulent states. Such behavior is particularly interesting
since instability in the spatially perturbed plane channel,
like that in most flows where fluid passes across system
boundaries, is convective [8] (disturbances grow in time
only in a comoving reference frame) rather than absolute
(disturbances grow in any frame) [7]; previous work has
shown the distinction between convective and absolute in-
stabilities is crucial in characterizing transition phenome-
na in fluids and plasmas [9-13].

Figure 1 depicts a plane channel flow that is geometri-
cally perturbed by cylinders in a spatially periodic array.
The Reynolds number is defined as R =Uoh/v with the
kinematic viscosity v, channel half-depth A, and velocity
scale Ug, where Uy is defined as 2 times the streamwise
velocity u averaged across y. Up and h are used to scale

velocity, length, and time (h/U,).

The experiment is performed in a water channel with
h=0.794 cm and with 21 cylinders approximating an
infinite periodic array. Cylinder 1 (numbering from up-
stream to downstream) lies a distance of 160 downstream
from the channel inlet; the unperturbed flow approaches a
parabolic profile in a length D = 0.11U¢h/v < 20 for the
range of R investigated [14]. The experiment maintains
constant mass flux inflow-outflow boundary conditions
in x. The fluid temperature is controlled to *0.1°C
and the upstream root-mean-square velocity fluctuation
(noise) is typically 0.07% of U,.

Three-dimensional time-periodic disturbances [15] are
imposed by an oscillating paddle, whose axis of rotation is
located at (x =—4.8, y =0) upstream of cylinder 1 (Fig.
1). The range of oscillation frequencies investigated lies
within 5% of the natural frequency selected by the
traveling-wave state [7]. Magnetically mounted bumps
with a semicircular cross section (radius 0.5) are placed
at regular intervals along z on one side of the paddle.
The presence of the bumps imposes a three-dimensional
variation whose wave number k; can be controlled by
varying the number of bumps and their center-to-center
spacing.
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FIG. 1. Our geometry of plane channel flow with spatially

periodic perturbations is defined in units of the half-depth A
by the cylinder spacing L =6.66, cross-channel location yey
= —0.50, and the cylinder diameter d =0.40. Flow is in the
streamwise direction x, and the spanwise dimension z (perpen-
dicular to the figure) and ranges from —20 to 20 in the experi-
ment. At the inlet of the cylinder array, time-periodic distur-
bances are imposed by a paddle, which oscillates about the
channel center line with an angular displacement ¢=72°.
Semicircular bumps (shaded) whose length along z is = 1 are
placed on the paddle to impose a controlled initial three dimen-
sionality on the disturbance. The paddle and bumps are drawn
to scale.

434 © 1992 The American Physical Society



VOLUME 69, NUMBER 3

PHYSICAL REVIEW LETTERS

20 JuLy 1992

CYLINDER NUMBER
8 9 10 11 12 13
¥

AR
BLLELE

_—

FIG. 2. A digitally enhanced image of the flow at R=170
shows the standing-wave state. Dye for each wave front is pro-
duced electrochemically at the nearest upstream cylinder; the
straight vertical dye lines mark the separation bubble immedi-
ately downstream of each cylinder, whose position is indicated
by arrows. Each dye wave front is recorded separately in time;
however, the temporal periodicity of the flow is used to show all
dye fronts at the same phase in this composite image. Near
z =0, channel wall braces block a direct view of the flow; thus,
dotted lines have been drawn in to guide the eye. An initial
three dimensionality is imposed by two bumps on the distur-
bance paddle, which is shown approximately to scale at the far
left; the center-to-center spacing of the bumps imposes an ini-
tial wave number k; =0.42. The standing-wave pattern is not
advected downstream—see text.

Flow visualization reveals that the time-periodic distur-
bances evolve to standing waves along the span z (Fig. 2).
With thymol blue, a pH indicator, dissolved in the work-
ing fluid, dye is produced electrochemically near the
cylinders, which serve as electrodes, and is gathered into
fronts by the flow field [16]. Digital imaging methods are
used to acquire, enhance, and analyze video images of the
dye fronts. Between cylinders 8 and 9, the dye front
displays a nearly sinusoidal variation along z. This varia-
tion decreases between cylinders 10 and 11 and the dye
front becomes nearly two dimensional (independent of z).
Between cylinders 13 and 14, the spanwise wave reap-
pears strongly; however, the phase along z has shifted by
180° relative to the dye front between cylinders 8 and 9;
for example, an upstream dye front “‘peak,” which leads
the mean streamwise position of the front, becomes a
downstream dye front “valley,” which lags the mean
front position. (The amplitude pinching of the peaks be-
tween cylinders 9 and 10 indicates the eventual location
of the valleys.) Downstream of the region shown in Fig.
2, the dye fronts become nearly two dimensional again
between cylinders 16 and 17, and then a spanwise wave,
whose phase matches that shown between cylinders 8 and
9, emerges between cylinders 18 and 19.

The onset of the spanwise standing waves occurs at
R,=160 (Fig. 3). The standing waves develop spatially
in the streamwise direction because they bifurcate from
convectively unstable two-dimensional traveling waves.
Growth or decay of the secondary instability is estimated
by comparing local maxima of dye front distortion at
different streamwise positions (for example, in Fig. 2 the
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FIG. 3. (a) Local maxima of standing-wave amplitude are
compared simultaneously between upstream and downstream
regions for different Reynolds numbers. The disturbance pad-
dle imposes an initial wave number k; =0.9. (b) Standing-wave
amplitude Amms vs R is plotted for comparison between up-
stream (@) and downstream (®) locations in the experiment.
Each data point represents the average of seven dye fronts; the
error bars for each data point are smaller than the symbol size.
The disturbance paddle imposes an initial wave number

dye front between cylinders 8 and 9 is compared to the
dye front between cylinders 13 and 14). For lower values
of R le.g., R=145 in Fig. 3(a)], three-dimensional dis-
turbances observed upstream decay downstream to the
two-dimensional basic flow. However, for larger values of
R le.g., R=190 in Fig. 3(a)], three-dimensional distur-
bances grow downstream. The dye front distortion is
quantitatively characterized by the root-mean-square
fluctuations A.ys about the average streamwise position
of the dye front, as computed from digitized images of
the dye fronts. The ‘“‘crossover” of A;,s between
upstream and downstream locations as R is increased
occurs at R, =160 5, as can be seen in Fig. 3(b). The
instability at R; is well above the onset of the primary in-
stability at Ry =130 [7]. The downstream amplitudes are
presumably nearly saturated, but to demonstrate this
would require a channel whose streamwise length would
be longer than our present channel. In any event, our re-
sults demonstrate that three dimensionality grows slowly
over several periods of the two-dimensional traveling
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wave [approximately 10 periods separate the upstream
and downstream amplitudes in Fig. 3(b)]. In contrast,
for other open flows, the progression from onset of three
dimensionality to turbulence can occur in only a few
periods of the two-dimensional traveling wave [2].

Velocity measurements [Fig. 4(a)] in the laboratory
frame demonstrate that no additional frequencies accom-
pany the onset of three-dimensional standing waves.
Power spectra from single point measurements [Fig.
4(b)] show only the fundamental frequency and harmon-
ics [17]. This suggests that the phase of the standing
wave is locked to a given streamwise location in the labo-
ratory frame for fixed R and initial disturbance condi-
tions (paddle frequency, amplitude, k;). Flow visualiza-
tion confirms that standing-wave patterns, such as Fig. 2,
do not drift downstream, although individual dye fronts
are advected downstream in the open flow.

For different k;, the same characteristic spanwise wave
number, k, = 0.9, is selected, but the details of the spa-
tial evolution from k; to k, depend on k;. For k;
significantly less than 0.9 (k;=0.31 and k; =0.42 in Fig.
5), disturbances evolve directly to k. =0.9. For k; near
0.9 (k;=0.78 and k;=1.09 in Fig. 5), the standing wave
maintains the imposed wave number such that k; = k..
For k; significantly greater than 0.9 (k; =1.4 in Fig. 5),
counterpropagating waves with £, = 0.9 move from the
span walls at z = £ 20 toward the center; we expect that
the counterpropagating waves will evolve to standing
waves sufficiently far downstream, although our present
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FIG. 4. (a) Time series and (b) power spectrum of the
streamwise velocity u measured by laser Doppler velocimetry at
x =39 downstream of cylinder 18, y =0, and z=—5.2 for
R =170 and k; =0.42.
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channel is too short to confirm this conjecture. Evidence
for counterpropagating waves is also seen for k; =0.31; in
this case, a single bump at z =0 on the paddle imposes a
localized three dimensionality that is observed to propa-
gate to the span walls and to form the standing wave pic-
tured in Fig. 5 as the flow evolves from upstream to
downstream.

No theoretical predictions exist for secondary instabili-
ty in the geometry of Fig. 1; however, Amon and Patera
[6] numerically investigated secondary instability in a
plane channel flow where grooves cut in one wall replaced
cylinders as streamwise-periodic perturbations. Perform-
ing a direct simulation of the (nonlinear) Navier-Stokes
equations, they found a stable three-dimensional flow bi-
furcated from two-dimensional traveling waves; more-
over, a phase portrait constructed from velocity time
series indicated the three-dimensional flow was periodic
in the laboratory frame. However, standing-wave behav-
ior could not be detected in their simulations because the
computational domain contained only a single groove
with periodic boundary conditions imposed in x.

For open flows with a convective instability, flow struc-
tures are “‘noise sustained” [18]; i.e., no structures are ob-
served in the absence of external noise (disturbances). In
such systems it is usually difficult to distinguish between
the role of disturbances and the role of the intrinsic dy-
namics in the formation of structures. This difficulty is
particularly acute when the flow develops directly to tur-
bulence. Our work considers an open system with well-
controlled external disturbances and simple intrinsic dy-
namics, and we observe stable disturbance-generated
structures past the secondary instability. This system
with a stable tertiary flow can serve as a quantitative test
for theoretical ideas regarding the onset of secondary in-
stability [3,19,20]. Moreover, since the onset of standing
waves is accompanied by the loss of translational symme-
try along z, viewing the transition as a symmetry-
breaking bifurcation should offer further physical insight
[21]. We expect future work on spatially perturbed chan-
nel flow to investigate in detail the interplay between dy-
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FIG. 5. The selection of a characteristic wave number
k. = 0.9 by the flow is illustrated for different wave numbers &;
imposed initially on time-periodic disturbances at R =190.
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namics and disturbances in convectively unstable open
flows.
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FIG. 1. Our geometry of plane channel flow with spatially
periodic perturbations is defined in units of the half-depth A
by the cylinder spacing L =6.66, cross-channel location ycy
= —0.50, and the cylinder diameter d =0.40. Flow is in the
streamwise direction x, and the spanwise dimension z (perpen-
dicular to the figure) and ranges from — 20 to 20 in the experi-
ment. At the inlet of the cylinder array, time-periodic distur-
bances are imposed by a paddle, which oscillates about the
channel center line with an angular displacement ¢=72°.
Semicircular bumps (shaded) whose length along z is =1 are
placed on the paddle to impose a controlled initial three dimen-
sionality on the disturbance. The paddle and bumps are drawn
to scale.




