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Onset of Surface- Tension-Driven Benard Convection
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Experiments with shadowgraph visualization reveal a subcritical transition to a hexagonal convection
pattern in thin liquid layers that have a free upper surface and are heated from below. The measured
critical Marangoni number (84) and observation of hysteresis (3lo) agree with theory. In some
experiments, imperfect bifurcation is observed and is attributed to deterministic forcing caused in part
by the lateral boundaries in the experiment.

PACS numbers: 47.20.Dr, 47.54.+r, 47.20.Ky, 68.15.+e

The onset of motion in heated fluid layers with a free
upper surface has eluded complete understanding ever
since Benard's investigation [1]of these flows established
thermal convection as a paradigm for pattern formation
in nonequilibrium systems [2]. Rayleigh's analysis [3]
of this problem assumed that buoyancy effects, which
are always present in layers heated from below, caused
convection, but the threshold that Rayleigh predicted did
not agree with Benard's observations. Forty years elapsed
before it was recognized that the instability observed
in Benard's studies was not caused by buoyancy but
by surface tension gradients [4], as characterized by the
Marangoni number M (see Fig. 1). Linear theory [5]
yields onset at M, = 80. Weakly nonlinear theory [6,7]
predicts a subcritical (hysteretic) transition to a hexagonal
pattern. Only a single experimental investigation [8]
has systematically examined the onset of convection for
layers sufficiently thin such that surface tension forces
dominate over buoyancy. That experiment revealed a
primary transition to a concentric roll pattern at values of
M that decreased as the fluid layers became thinner; for
the thinnest layers studied, rolls emerged at I an order of
magnitude smaller than I, from theory.

In this Letter we present evidence for a well-defined
primary transition in surface-tension-driven Benard
(Marangoni) convection experiments designed so that sur-
face tension forces dominate over buoyancy to a greater
extent than in previous investigations. We observe a
hysteretic bifurcation to a defect-free array of hexagonal
cells; this bifurcation is modeled by an amplitude equa-
tion, which permits comparison to both linear and weakly
nonlinear stability theory. We also observe hexagons to
arise from an imperfect bifurcation where the hysteresis
disappears; this bifurcation is described qualitatively
with the addition of a deterministic forcing term to the
amplitude equation. In our experiments, surface tension
effects are 40 times larger than buoyancy effects, i.e.,
M/R = 40, where the Rayleigh number is defined as
R —= gP E Td /vtr with liquid expansion coefficient P
and gravitational acceleration g. A necessary condition
for the flow to be surface tension dominated is M/R ~ 1

[9]; previous experiments attained M/R ( 11 [8].
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FIG. 1. Cross section of our cylindrical convection cell. The
dimensionless control parameter is the Marangoni number
M —= orA Td/p vs, . where rrr —=

( do/dT ) and rr, p, tr, .

and ~ are, respectively, the liquid surface tension, density,
kinematic viscosity, and thermal diffusivity. The assumption
of conductive heat transport is used to obtain the mean
tern erature across the liquid layer 6T = (Tb —T,)/(I +
H ) with the Biot number H = ksd/kds defined in terms
of the thermal conductivities k and kg of the liquid and gas,
respectively.

The experiments are performed on a purified silicone
oil layer (d = 0.0419 ~ 0.0005 cm) that is bounded
from below by a 1-cm-thick gold-coated aluminum mir-
ror (Fig. 1) [10]. A uniform air layer (dg = 0.0455 ~
0.0008 cm) lies between the oil layer and a 1-mm-thick
sapphire window. The oil is confined by a Teflon side-
wall ring of inner diameter 4.53 ~ 0.01 cm. A 50-
p, m-thick polyethersulfone annular buffer adjacent to
the sidewall suppresses convection driven by horizontal
temperature gradients [11] that arise from nonuniformi-
ties of the contact line at the sidewall. The inner diam-
eter of the buffer determines the radius to height ratio
I = 45.6 ~ 0.1 of the convecting region. The oil and the
air layer depths each vary by less than 1% over the central
70% of the convecting region, as measured both mechan-
ically and interferometrically. Use of a purified [12] sili-
cone oil (96.7% hexacosamethyldodecasiloxane) avoids
both condensation [12] and cross-diffusive effects [13)
that can affect pattern formation. A temperature gradient
is imposed by water cooling the window to a tempera-
ture T, = 13.320 ~ 0.005 'C and by computer-controlled
heating of the mirror to a temperature Tb that fluctuates
less than ~0.0005 C. For sufficiently small Tb —T, ,
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the surface tension rr(T) at the liquid-gas interface is uni-

form; however, with Tb —T, sufficiently large, instabil-
ity causes surface tension variations that drive How in the
bulk. The shadowgraph technique is used to detect on-
set and to visualize patterns. Images are digitized and
background subtracted to improve the signal-to-noise ra-
tio. The time scale in the experiment is set by the vertical
diffusion time t, = d /i~ = 1.9 s.

Figure 2 demonstrates that the conductive state under-
goes an abrupt transition to hexagons as M is increased
slowly (dM/dt = 10 in units of t ') Jus. t prior to on-
set, weak circular convection rolls arise near the bound-
ary [upper left and lower right in Fig. 2(a)]; we believe
these rolls are driven by static forcing due to the slight mis-
match of thermal conductivity between the annular buffer
and the liquid. Convection cells first appear within a por-
tion of the boundary rolls after an increase of 2 X 10
in e —= M/M, —1. (M, is determined from the experi-
ments, as will be described. ) Additional hexagons then
nucleate from the initial cells and propagate as a travel-
ing front, invading the apparatus until the entire How do-
main is filled with the hexagonal pattern [Fig. 2(b)]. The
resulting pattern is nearly free from defects, since the lat-
tice is grown from a single "seed crystal" at the boundary.
The front propagates across the apparatus in approximately
900t, a time short compared to the horizontal diffusion
time 4V t = 8000t .

Upon decreasing e quasistatically, hexagons persist at
parameter values below that for the first appearance of
cells (Fig. 3). The transition to the conductive state oc-
curs gradually; the control parameter typically must be
decremented through a range of e before the hexagonal
convection pattern disappears. The front between hexag-
onal and conductive states can remain stationary indefi-
nitely (or at least for times long compared to the horizon-
tal diffusion time) for states like Figs. 3(b) or 3(c) if e is
held constant.

Near onset, the hexagonal pattern arises from the
interaction of three plane wave (roll) solutions, whose
wave vectors have a magnitude equal to the critical wave

FIG. 2. The abrupt onset of hexagons in Marangoni convec-
tion. (a) Just prior to onset, weak convection rolls develop at
the boundary for e = —5.6 X 10 ~. (b) A hexagonal pattern
fills the entire convection apparatus for e = —2.5 X 10

FIG. 3. Return to the conductive state for decreasing e.
Below onset hexagonal convection persists at (a) e = —2.60 &
10, (b) e = —2.82 X 10 2, and (c) e = —2.96 X 10 2

before disappearing at (d) e = —3.20 X 10

number and differ in angle by 2~/3 [14]. The evolution
of the pattern can then be described by a Landau equation
for the amplitude A:

A=@A+ nA —A + f,
with n ) 0 and f a constant that can account for de-
terministic forcing. In some cases, the coefficients in

Eq. (1) can be computed from the full fiuid equations
[15]. The existence of hexagons requires n 4 0; thus the
bifurcation from the conductive state must be subcritical.
The solutions for hexagonal convection and for conduc-
tion are both linearly stable over a range of parameters:
e ~ e ~ 0 with e = —n /4 (the conductive state is
linearly unstable for e ) 0).

Equation (1) is a variational model that exhibits relax-
ational time dependence governed by a potential function
[16],which we first consider for f = 0. Over the param-
eter range, where both conduction and convection are sta-
ble, each state corresponds to a minimum of the potential;
one state represents the global minimum, while the other
state, the metastable phase, represents a local minimum.
The potential varies as e changes; at a parameter value e
(the Maxwell point) both states have equal values of the
potential. As e passes through e, the states exchange
the roles of global stability or metastability. For Eq. (1),

8
the conductive state is globally stable for e ( e = 9e
and metastable for e ( e ( 0.

To compare the experimental observations to the
model, we compute two-dimensional spatial power
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spectra from shadowgraph images. The spectra are
azimuthally averaged and normalized to the variance of
the image intensity. The mean position of the fundamen-
tal spectral peak yields the wave number 1.90 ~ 0.02
(nondimensionaii7ed by d); linear stability analysis
predicts a critical wave number of 1.99 [5]. The wave
number is independent of t for the range investigated.
The amplitude in Fig. 4 is the square root of the power
contained in the spectral peak at the fundamental wave
number.

Figure 4 demonstrates that the experimental observa-
tions illustrated in Figs. 2 and 3 are consistent with
Eq. (1). Hexagonal convection amplitudes for increasing
and decreasing e near the bifurcation are fit by a parabola,
as suggested by (1) with f = 0; from this fit we esti-
mate M, = 83.6 with a precision of ~0.5 in M. The
uncertainty in the accuracy is 11 in M, primarily due
to the uncertainty in the thermal properties for the sili-
cone oil. From Fig. 4, we also estimate e = (—3.2 ~
0.3) X 10 ~ and e = (—2.8 ~ 0.3) x 10 [17]. For
increasing e, the conductive state shown in Fig. 2(a) is
deep within the metastable regime when the initial onset
occurs. The weak convection roll at the boundary pro-
vides a sufficient perturbation to push the system over
the potential barrier, and the front between the two states
propagates to spread the globally stable state (hexagons)
across the entire apparatus. With decreasing e, hexagonal
convection can become metastable; however, the range of
parameter values where hexagons are metastable is nearly
an order of magnitude smaller than the region of metasta-
bility for conduction. This suggests that the transition
back to conduction will be more sensitive to small spa-
tial variations in e due to nonuniformities in the depths
of both liquid and gas layers. Thus, for values of e near
the metastable region of hexagons, the front will move in

2.5

stages to spread the conductive state across the apparatus,
as shown in Figs. 3(b) and 3(c).

In some cases, convection appears without hysteresis.
This situation arises, for example, in experiments where e
is repeatedly increased and decreased, causing conduction
and convection to alternate. A reproducible hysteresis is
observed for the first cycle after the apparatus is cleaned
and assembled (Fig. 4); as the number of cycles increases,
hysteresis is observed at smaller values of e and for a
smaller range of e. Eventually, the subcritical transition
in Fig. 4 evolves to a convective onset that occurs con-
tinuously [Fig. 5(a)] after a sufficient number of cycles,
which varies from 3 to 15 for different experimental runs.
The evolution from a subcritical bifurcation (Fig. 4) to
an imperfect subcritical bifurcation [Fig. 5(a)] [18] occurs
on a time scale much longer than the horizontal diffu-
sion time. Equation (1) models imperfect bifurcation with

f 4 0; for f ) f, = n3/27, hysteresis disappears at. the
onset of hexagons. In this regime, Eq. (1) qualitatively
describes the amplitudes measured from our experiments
[Fig. 5(a)]; the difference between the model and the data
suggests that a more complex form for f [e.g. , f(e)] is
necessary for quantitative agreement.

The physical origin of the forcing that causes imperfect
bifurcation has not been determined definitively; however,
the observation of low amplitude rolls parallel to the lat-
eral boundary [Fig. 5(b)] suggests sidewall boundaries are
affecting the Row. Similar structures arise in buoyancy-
driven convection with intentional thermal forcing at the
sidewall [11],although forcing for surface-tension-driven
How is probably more complex because some deforma-
tion of the free surface at the boundary is unavoidably
present due to nonuniform contact line pinning at the side-
wall. The low amplitude Aows become increasingly cel-
lular away from the boundaries and toward the center of
the apparatus; moreover, with increasing e above onset,
the rolls at the sidewall are supplanted by hexagonal cells
as the amplitudes arising from imperfect bifurcation ap-
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FIG. 4. Hysteresis at the onset of Marangoni convection is
demonstrated hy a plot of the Fourier mode amplitude A from
shadowgraph images vs e. Convection appears suddenly with
slowly increasing e (+) and persists below onset for slowly
decreasing e (triangles). A fit to the convective branch ( )
yields M, = 83.6 (A T, = 1.6S 'C), which we use to com-
pute e.
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FIG. 5. Imperfect bifurcation in Marangoni convection. (a)
Data (X) are compared to Eq. (I) with f = 1 3f, (- — — -). The. .

parabola from Fig. 4 ( ) is also shown. (b) Shadowgraph
image of weak convective flow at e = —5.30 X 10 in the
presence of significant deterministic forcing.
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proach the amplitudes observed during hysteretic onset
[Fig. 5(a)].

Our experimental studies of onset confirm the predic-
tions of theory and suggest an explanation for the puz-
zling disagreement between previous experiments and
theory for the century-old problem of surface-tension-
driven Benard convection. Our determination of M, =
84 is in reasonable agreement with M, from linear the-
ory [19], and our observation of subcritical bifurcation is
in accord with weakly nonlinear theory. Our finding of
3.2% hysteresis sets a standard for comparison to non-
linear theories, whose estimates of hysteresis range from
0.2% [7] to 2.3% [6]. Observation of imperfect bifurca-
tion demonstrates the sensitivity of the primary instability
in Marangoni convection to perturbations; the appearance
of rolls before hexagons at M « M, in previous experi-
ments [8] may well be due to this sensitivity.
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