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The transition between hexagonal and square patterns is investigated in laboratory experiments on

surface-tension-driven Bénard ~Marangoni! convection in a fluid of Prandtl number 81. As the

Marangoni number M is increased, an ideal hexagonal pattern is supplanted by a defect-free square

pattern; the transition occurs gradually with patterns of mixed hexagonal, pentagonal, and square

symmetry arising at intermediate values of M. An elementary topological process associated with

two-dimensional patterns governs local changes in morphology; the dynamics are relaxational with

all patterns becoming stationary withM fixed for a sufficiently long time. The transition is hysteretic

and depends strongly on the pattern wave number. © 1999 American Institute of Physics.

@S1070-6631~99!00209-3#

I. INTRODUCTION

Hexagonal flow patterns have been associated with the

onset of convection ever since Bénard’s observations of thin

fluid layers heated from below;1 until recently, however, the

transition from hexagons to other patterns was unexplored

for the surface-tension-driven regime of Bénard’s studies.

Experiments with fluids of very high Prandtl number P

;1000 suggest that defects increase in number with in-

creased heating, thereby inducing a gradual transition from

hexagons to disordered cellular arrays that can be character-

ized using techniques describing melting in two-dimensional

~2-D! systems.2 Alternatively, more recent experiments with

P;100 demonstrate a transition from hexagons to square

patterns as the heating is increased.3,4 In both cases, the ex-

perimental results suggest that time-dependent flows arise

from the instability of hexagons.

We report the observation of time-independent square

patterns arising from secondary instability in surface-

tension-driven Bénard ~Marangoni! convection experiments

on a fluid with P581. As the temperature gradient across the

layer is increased quasistatically, hexagonal patterns lose sta-

bility to patterns of mixed symmetry as individual hexagons

undergo local changes in topology and transform first into

pentagons and, then, into squares; for sufficiently large heat-

ing, the system forms a nearly ideal square pattern. For a

fixed temperature gradient, these states are time independent,

even when the pattern is a mixture of hexagons, pentagons,

and squares. The transition between patterns exhibits hyster-

esis; moreover, the transition onset depends on the pattern

wave number, which, in turn, depends on the initial condi-

tions of the experiment.

II. DESCRIPTION OF EXPERIMENT

Surface tension gradients at the interface between sili-

cone oil and air layers drive flow patterns in our experiments

~Fig. 1!. The silicone oil layer is heated from below by a 1

cm thick gold coated aluminum mirror at a temperature Tb ;

the air layer is cooled from above by a 0.3 cm thick sapphire

window at a temperature T t. For sufficiently small Tb2T t ,

the oil–air interface is isothermal and the surface tension

s(T) is uniform. With Tb2T t sufficiently large, instability

induces surface tension variations at the interface that drive

flow in the bulk. The average temperature difference across

the oil layer DT is related to Tb and T t as described below;

we use DT to form the dimensionless parameter, the Ma-

rangoni number M, which describes the strength of the sur-

face tension driving: M[sTDTd/rnk , where sT
[uds/dTu, and r, n, k are, respectively, the liquid density,

kinematic viscosity, and thermal diffusivity ~Table I!. For

heating from below, flow may also be driven by buoyancy as

characterized by the Rayleigh number R[gaDTd3/nk with

liquid expansion coefficient a and gravitational acceleration

g. We minimize buoyancy effects by performing experi-

ments in thin liquid layers where 8,M /R[sT/(ragd2)
,15 independent of DT ~Table II!. The corresponding Ray-
leigh number in the air is negligibly small.

During assembly of the convection apparatus, the dis-

tance d1dg ~Fig. 1! is set using indium shims that are de-

formed to a predefined thickness. The mirror and the window

are then aligned parallel within 62 mm by interferometry. A

precisely defined volume of silicone oil is injected into the

apparatus to set both d and dg . ~The dependence of d on the
oil volume is determined by calibration.! The entire convec-
tion apparatus is then adjusted until the liquid surface is

aligned parallel with the mirror and window within 62 mm,
except for a small region in the vicinity of the sidewall,

where there is nonuniformity due to irregular pinning of thea!Electronic mail: michael.schatz@physics.gatech.edu
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meniscus at the sidewall. Tb is imposed by a thin-film heater;

during a run Tb fluctuates by 60.0003 °C about the

computer-controlled setpoint values. T t is fixed by cooling

water at 13.31060.002 °C, which washes over the window

and circulates around a chamber that encloses the convection

apparatus. The temperature is measured using thermistors

placed in the bottom mirror and above the top window. Com-

mercial silicone oils ~polydimethylsiloxane! are distilled to

eliminate multiple polymer components; the resulting puri-

fied oil consists of a single component, hexacosamethyldode-

casiloxane, of .95% purity with Prandtl number P581 and

other physical properties as listed in Table I.5 The sidewall is

made of Teflon bonded to an aluminum ring that surrounds

the mirror.

Patterns are visualized using the shadowgraph method.

The images are acquired from a standard NTSC video cam-

era by a computer-controlled frame grabber and by a time-

lapse VCR. The patterns are analyzed by representing the

images using a Wigner–Seitz construction.6 A threshold is

applied to the images to determine the centers of the cells

~the warm upflow regions!. The Wigner–Seitz construction

is then formed by finding the midpoints of each line segment

that joins a cell center to its nearest neighbors; the perpen-

dicular bisectors at the midpoints intersect to form a closed

convex polygon that is associated with each cell center. The

boundaries of the Wigner–Seitz polygons are seen to faith-

fully match the downflow boundaries from the shadowgraph

images ~Fig. 2!. We use the Wigner–Seitz representation to

determine the relative fraction n and the average area A for

cells of a given symmetry. The average wavelength l is ob-

tained from A, assuming all cells of a given symmetry have

edges of equal length; in this case, the average wavelength

for squares is ls5AAs and the average wavelength for hexa-
gons is lh5AA3Ah/2.

Using an infrared camera in separate experiments, we

directly measure the horizontally averaged temperature at the

interface ^T i& to obtain the temperature difference across the
oil layer DT[Tb2^T i& used in our definition of M. We use

an infrared detector ~liquid nitrogen-cooled 2563256 array

of indium antimonide photodiodes! to measure thermal ra-

diation emitted from a silicone oil mixture consisting of ap-

proximately 90% commercial polydimethylsiloxane

(0.05 cm2 s21 viscosity! and 10% polymethylhydrosilox-

ane ~0.35 cm2 s21 viscosity!. This blend of silicone oils en-

sures that the detected thermal radiation is emitted essen-

tially at the surface of the oil ~within ;50 mm of the

interface!; i.e., the oil layer appears as a nearly ideal black-

body when the detector is narrow bandpass filtered around

the very strong absorption peak for polymethylhydrosiloxane

at 4.61 mm. The exact mixture ratio of the silicone oils is

chosen to match the viscosity at 25 °C of the purified fluids

used in the pattern forming experiments ~Table I!. This mix-
ture is put in a specially built convection apparatus where the

window ~Fig. 1! is liquid cooled using chloroform, which is
transparent to thermal emissions in the range of interest.7

The imager is first calibrated using a silicone oil layer that is

sufficiently thin to remain in the conduction regime for a

wide range of temperatures; oil is then added until d and dg
match that of the pattern forming experiments. Thermal im-

ages are then captured and used to measure ^T i& and, there-
fore, determine DT as a function of Tb2T t . We apply this

temperature calibration to our pattern forming experiments,

where infrared imaging could not be used by assuming both

TABLE I. Values at 25 °C of silicone oil and air physical properties for

surface-tension-driven Bénard convection experiments.

Oil density r 0.93 g cm23

Oil kinematic viscosity n 0.070 cm2 s21

Oil thermal diffusivity k 8.631024 cm2 s21

Oil thermal expansion coeff. a 1.031023 K21

Surface tension coeff. uds/dTu 0.068 dyne cm21 K21

Oil thermal conductivity k 13.03103 erg s21 cm21 K21

Air thermal conductivity kg 2.63103 erg s21 cm21 K21

TABLE II. Parameters for the two experimental configurations explored in

our surface-tension-driven Bénard convection experiments.

Parameter Config. 1 Config. 2

Oil depth d ~cm! 7.1160.0431022 9.6560.0431022

Air depth dg ~cm! 10.3960.0431022 7.5560.0431022

Time scale tv ~s! 5.9 10.8

Aspect ratio G 32 23

Biot number B 0.14 0.26

M /R 15 8

FIG. 1. Cross section of our cylindrical convection apparatus.

FIG. 2. Patterns obtained from Marangoni convection experiments are well

represented using a Wigner–Seitz unit cell construction. A pattern is shown

for d50.0711 cm. ~a! The pattern planform is visualized using shadowgra-

phy; warm fluid wells up to the layer’s free surface in each cell’s center

~dark region! and flows back down into the layer at the cooler edges of each
cell ~bright lines!. ~b! A Wigner–Seitz construction ~black lines! is super-
imposed on the pattern in the original shadowgraph image shown in ~a!.
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experiments have the same DT for a given Tb2T t ; in Table

III, this is represented by expressing M (}DT) as a function
of M cond (}Tb2T t), the Marangoni number based on

DTcond[(Tb2T t)•(11B21)21 with the Biot number B

[kgd/kdg ~see Fig. 3!. Below the onset of convection, B

describes the conductive heat transport across the oil–air in-

terface and DT5DTcond . Above onset, however, the convec-
tive flow in the oil enhances heat transport relative to pure

conduction, so DT,DTcond . Nevertheless, both M and

M cond are well-defined control parameters with different ad-

vantages for describing flow above the onset of convection.

M cond ~unlike M! is independent of the flow structure8 while

M permits a comparison to previous experiments,2 where the

air layer is unbounded above and M cond is ill defined. For the

results presented here, we use the reduced Marangoni num-

bers e[(M2M c)/M c and econd[(M cond2M c)/M c , where

M c is the critical value of the Marangoni number determined

from linear stability theory.8

III. EXPERIMENTAL RESULTS

An overview of the transition from hexagons and

squares is illustrated in Fig. 4. We investigate the transition

by slowly ramping e over a range sufficient to induce

changes in the pattern; for our studies de/dt'331024,

where time is scaled by tv5d2/k ~Table II!. We typically

begin experimental runs at low values of e, where stationary
hexagons are stable and cycle the control parameter by qua-

sistatically and repeatedly increasing and decreasing e over

some range. Beginning with the onset of convection, a hex-

agonal pattern with a few nonhexagonal defects arises and

persists for a range of e @Fig. 4~a!#. As e is increased further,
some hexagons transform into pentagons and squares @Fig.
4~b!#. With e sufficiently large, the pattern exhibits mostly

square cells, with nonsquare cells limited to the periphery of

the apparatus to accommodate the pattern within the circular

lateral boundary @Fig. 4~c!#. In this range of e, the interior of
the pattern sometimes consists of a single domain of squares,

as shown in Fig. 4~c!, or may contain multiple ~typically two
or three! domains with differing orientation of the square

pattern; the selection between square patterns of either single

or multiple domains depends on the initial conditions of the

experiment. As e is then decreased, the square pattern loses

stability; patterns of mixed symmetry like in Fig. 4~b! reap-
pear; a planform dominated by hexagonal cells reappears

with e sufficiently small @Fig. 4~d!#.
Further insight into the transition can be obtained by

describing the change to a localized region of the pattern in

terms of elementary topological processes by which two-

dimensional patterns may be modified. For each convection

cell in a hexagonal pattern, downflow boundaries form the

six edges of each cell and three edges intersect to form a

vertex @Fig. 5~a!#. The topology of hexagonal networks can

be modified when an edge shrinks to zero length and the two

vertices that terminate the edge approach one another and

coalesce to form the intersection of four edges. @Compare,
for example, the left edge of cell number 4 in Figs. 5~a!–
5~d!.# In many hexagonal networks, the four edges will

‘‘swap neighbors’’ as the intersection of the four edges splits

up into two new vertices that are separated by a new edge;

TABLE III. Coefficients for determining the Marangoni number M from

temperature calibrations using infrared imaging with measurements of Tb
and T t expressed as M cond :M5C01C1M cond .

d ~cm! C0 C1

7.1160.0431022 24.34 0.6536

9.6560.0431022 40.68 0.4900

FIG. 3. A calibration curve for determining the reduced Marangoni number

e for d50.0711 cm. For each data point ~solid squares!, econd is determined
from T t and Tb, assuming conductive heat transport, while e is determined

from a direct measurement by infrared imaging of the average temperature

at the liquid–gas interface. The solid line represents a linear least-squares fit

to the data; the dashed line corresponds to e5econd.

FIG. 4. Shadowgraph images illustrate the secondary instability leading to

square patterns in Marangoni convection with d50.0711 cm. The convec-

tive pattern changes with increasing e from hexagons at e51.61 ~a!, through
a mixed state at e53.90 ~b!, to a square pattern at e57.22 ~c!. As e is then

decreased, hexagons reappear in the pattern by e53.50 ~d!; note, however,
that the reappearing hexagons are larger than in ~a! ~see the text!. For fixed
e, all the patterns are time independent.
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this topological transformation is known as a ‘‘T1 process.’’9

However, for hexagonal patterns with increasing e in Ma-

rangoni convection, this T1 process is arrested; as the verti-

ces coalesce, the angles between adjacent edges changes

from 120° to 90° and the intersection of four edges becomes

stable. Each such arrested T1 process causes two cells to lose

an edge; thus, this process initially leads to the formation of

pentagons @e.g., cells 1 and 4 in Fig. 5~d!#; with increasing e,
further arrested T1 processes lead to the formation of squares

@Figs. 5~e!–5~g!#. The occurrence of this process in a given

cell tends to induce it in neighboring cells; thus, the forma-

tion of vertices with four-fold coordination occurs in chains

@e.g., the left and right edges of cells 4 and 7 in Figs. 5~c!–
5~f!#. Moreover, distorted cells near the boundary tend to

induce this process; thus, pentagons and squares frequently

first appear near the lateral boundaries of the pattern. By this

process, square cells become predominant as most vertices

become fourfold @Fig. 5~h!# with e sufficiently large. As e is
decreased, the time-reversed version of this arrested T1 pro-

cess occurs as fourfold vertices split into two threefold ver-

tices with the appearance of a new edge; this, in turn, leads to

the formation of pentagons from squares and, then, hexagons

from pentagons. The hexagonal planform returns for e suffi-
ciently small.

All patterns are time independent for fixed conditions in

the range of e we explored ~Fig. 6!. Qualitatively, the time
evolution of pattern topology behaves in a relaxational

‘‘stick-slip’’ or ‘‘avalanche’’ fashion as e is slowly

ramped—time periods of no pattern activity are interspersed

with periods when one or several arrested T1 processes occur

in bursts lasting several tens of tv . If the ramping of e is

halted at any stage in the transition between the two ideal

planforms @Figs. 4~a! and 4~c!#, then the pattern may undergo
significant changes within '200tv after the ramping of e
ceases; thereafter, the patterns typically remain static. In

terms of the horizontal diffusion time th[G2tv51.7 h, we

have observed steady square patterns for fixed e for as long

as 54th ~almost four days! and steady mixed patterns for as

long as 15th ~26 h!; in both cases, the observation periods

were limited only because e was changed to new parameter

values ~Fig. 6!. The observation of stationary patterns de-

pends crucially on the lateral sidewall boundary conditions;

in experiments where a nonuniformity in temperature or pin-

ning is known to exist, we observe that cells at the lateral

sidewall may move parallel to the boundary and induce mo-

tion throughout the entire pattern. Even in well-controlled

experiments, small changes in the patterns under fixed con-

ditions can often be attributed to motion of the cells at the

lateral boundary @e.g., the slight shifting of cells on the left

side of Fig. 6~a!#.
The transition between hexagons and squares depends

strongly on the initial conditions and the previous history of

the pattern. We first consider the case where e is increased up
to a value where square cells are just beginning to dominate,

i.e., the relative number fraction of square cells ns has just

exceeded 1
2 @Figs. 4~b! and 7#. The transition appears to be

subcritical since the number fraction exhibits hysteresis; a

FIG. 5. The transition from hexagons to squares for a localized region of the

pattern with increasing e is shown by a sequence of shadowgraph images.

Initially, the pattern is a nearly perfect hexagonal lattice at e51.61 ~a! @the
lower right corner in Fig. 4~a!#. Cell edges then disappear via an elementary
topological process ~a modified T1 process; see the text! as e is increased;

~b! e52.68, ~c! e52.98, ~d! e53.30, ~e! e53.89, ~f! e54.15, ~g! e54.28.

Eventually, all cells ~locally! become squares ~h! e54.56.

FIG. 6. The very weak time dependence of the patterns is illustrated by

superimposed images of the convective flow with d50.0965 cm. ~a! Two

images of stationary square patterns separated by 54th ~almost four days!
are shown for e56.0. The downflow boundaries of the initial pattern and the

final pattern are shown in white and black, respectively. ~b! Two images of

stationary patterns of mixed symmetry separated by 15th ~26 h! are shown
for e54.5.

FIG. 7. The relative fraction of squares n s ~a! and wavelength l of squares

and hexagons ~b! as a function of e for transition between small hexagons

and squares for d50.0711 cm @Figs. 4~a! and 4~b!#. Closed symbols corre-
spond to increasing e quasistatically while open symbols correspond to de-

creasing e quasistatically; symbol shape indicates cell symmetry. ~a! With

two complete cycles of increasing and decreasing e, ns exhibits a repeatable
hysteresis loop. ~b! The average wavelengths of both hexagons (lh) and

squares (ls) are nearly identical, are reproducible for each cycle, and in-

crease with increasing e. The wavelengths are nondimensionalized by d; for
comparison, l53.14 at the onset of hexagonal convection.
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substantial number of squares occurs at lower values of e for
decreasing e as compared to increasing e @Fig. 4~a!#. Defin-
ing the transition to occur at es corresponding to ns50.5 for

the pattern, we have es'3.8. The wavelengths l for both

hexagons and squares are nearly equal and increase with in-

creasing e @Fig. 4~b!#. In this range of e it is noteworthy that
the wavelength’s dependence on e is ‘‘reversible;’’ the wave-
length for both squares and hexagons takes on a unique value

as e is cycled and displays little evidence of hysteresis that is
present for ns .

Both ns and l exhibit different behavior if the range of e
is increased so that the experiment obtains a nearly perfect

pattern of squares @Figs. 4~c! and 8#. In this regime, experi-

ments begin also with a pattern of hexagons like in Fig. 4~a!;
however, instead of decreasing e after ns just exceeds 0.5, as
in Fig. 7, e is further increased until ns approaches unity

@ramp 1 in Fig. 8~a!#. The wavelength for square patterns is

observed to increase significantly @Fig. 8~b!# in this process;
the increase in square size is readily visible by comparing

Figs. 4~b! and 4~c!. If e is then decreased @ramp 2 in Fig.

8~a!#, ns exhibits seemingly little hysteresis as squares lose

stability to hexagons; however, the square wavelength main-

tains its increased value @Fig. 8~b!# and induces hexagons

with a substantially increased wavelength @Fig. 8~c!#, as can
be seen by comparing Figs. 4~a! and 4~d!. Thereafter, re-

peated cycling of e ~ramps 3 and 4 in Fig. 8! causes the

pattern to range between large squares and large hexagons

@Figs. 4~c! and 4~d!# with approximately the same wave-

length; the transition once again exhibits hysteresis in ns,

with an onset that has increased to es'5. The pattern may be

returned to a transition like that observed in Fig. 7 by de-

creasing e to sufficiently small values such that a pattern of

small hexagons returns.

IV. COMPARISON WITH PREVIOUS WORK

Our results support several findings of the experiments

of Eckert ~née Nitschke! and Thess3 ~ET!, the numerical

simulations of Bestehorn10 ~B!, and the combined experi-

ments and simulations of Eckert, Bestehorn and Thess4

~EBT!. ET, B, and EBT find that hexagonal patterns lose

stability to square patterns for e sufficiently large. Both ET

and EBT observed the transition to squares to appear gradu-

ally over a range of e and describe the transition between

hexagons and squares as being ‘‘mediated’’ by pentagons.

ET and EBT also observe hysteresis in the relative number

fraction of square cells as e is cycled over the transition

range. The simulations of B suggest that the observation of

squares requires P to be not too large; this may explain why

our observations at P581 and those of ET and EBT at P

5100 differ from observations of a disordering transition in

experiments at P'1000.2

The time independence of the patterns we observe dif-

fers from the experimental observations of EBT, but in

agreement with the simulations of EBT. After hexagons lose

stability, the experiments of EBT at P5100 and G532 ex-

hibit patterns that continually evolve over slow time scales

;th ; this evolution occurs even for patterns with ns50.55,

the largest relative fraction of squares observed in their ex-

periments. The simulations of EBT at G511.5, however,

suggest that both square and mixed patterns are time inde-

pendent for P.40. EBT suggest that larger G in the experi-

ments yields mean flow effects that are sufficiently strong to

drive time-dependent flow; however, our experimental re-

sults at comparable G suggest that the mean flow effects are

not sufficiently strong to induce time dependence. Buoyant

effects are stronger in the experiments of EBT and may ac-

count for the differences in observations; thicker d in EBT

yield M /R'3, smaller than in our experiments ~Table II!,
while the simulations of EBT neglect buoyancy. Finally, our

observations of time dependence induced by the motion of

cells near the lateral boundary suggest that nonuniformity at

the lateral boundary could drive cell motion in the experi-

ments of EBT, which, in turn, may induce time dependence

throughout the entire pattern. Future simulations at large

M /R and large G should shed some light on this issue.

The results of ET and EBT suggest a well-defined mean

e and l for the appearance of square patterns while our re-

sults show that the transition is strongly dependent on the

history of the pattern. The experimental results of EBT are

consistent with a transition like that shown in Fig. 7, where

the pattern ranges between a nearly perfect hexagonal array

at low e and a mixed symmetry planform with squares in the

bare majority (ns slightly larger than 0.5! at high e. In this

FIG. 8. Relative fraction of squares n s ~a! and wavelength l of squares ~b!
and hexagons ~c! as a function of e for transition between large hexagons

and squares for d50.0711 cm. ~a! The beginning with a mixed pattern of

small cells @Fig. 4~b!#; e is increased until large squares arise @Fig. 4~c!#
~closed squares, up arrow 1!. These square patterns lose stability to large

hexagons ~open squares, down arrow 2! with decreasing e. Subsequent in-
creases in e ~closed diamonds, up arrow 3! and decreases in e ~open dia-

monds, down arrow 4! lead to transitions between large hexagons and

squares for the range of e shown. ~b! Wavelength for squares in the range of

e corresponding to the ramps in e in ~a!. ~c! Wavelength for hexagons in the

range of e corresponding to the ramps in e described in ~a!.
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regime, both our experiments and EBT experiments show

that l of both hexagonal and square cells increase with in-

creasing e; moreover, l~e! exhibits virtually no hysteresis.

However, for transitions where ns approaches unity, we ob-

serve both l and ns can exhibit hysteresis and the onset of

squares at ns50.5 is shifted to larger values of e. The simu-
lations of EBT do not address the effect of l on the transition

between hexagons and squares ~l is fixed by the periodic

boundary conditions of the simulation!. However, the simu-
lations of EBT find that the transition is dependent on

Prandtl number P; they estimate that the transition occurs at

econd50.28P0.68; for P581 of our experiments, the simula-

tions predict transition at econd55.6, which lies in the range

of 4.5,econd,6.4 observed in our experiments. It should be

noted that the simulations of EBT are conducted with B

50.6, larger than for our experiments B50.14 or 0.26;

moreover, for d/dg'1 of our experiments, it is known that

the heat transfer across the oil–air interface at the onset of

convection is more sensitive to l than for the d/dg'0.3 of

both experiments and simulations of EBT.8

V. CONCLUSIONS

The secondary instability leading to stationary defect-

free square patterns in Marangoni convection differs qualita-

tively from the appearance of squares in other convective

flows, where square patterns arise at the primary instability

of the uniform state. For example, in buoyancy-driven

~Raleigh–Bénard! convection in a binary fluid,11,12 square

patterns arise at onset and lose stability to rolls ~stripes! as
DT is increased. Squares also arise at the primary instability

in pure fluid Raleigh–Bénard convection that either has a

strongly temperature-dependent viscosity13 or is sandwiched

between top and bottom boundaries of poor thermal

conductivity;14 in the former case, hexagons can also occur

at the onset of convection, but are observed to lose stability

to either stripes15,16 or to disordered polygons13 that are simi-

lar in appearance to patterns arising from instability of hexa-

gons in Marangoni convection at high P.2

Pattern competition between hexagons and squares in

Marangoni convection poses interesting theoretical chal-

lenges similar to those that arise in pattern selection in a

ferrofluid layer. In the latter case, experiments show that a

steady hexagonal planform may lose stability either to stripes

or square patterns.17,18 Symmetry-breaking bifurcation

theory applied to ferrofluid instability captures some features

of the pattern selection,18 but is inherently unable to describe

the transition between hexagons and squares in ferrofluids or

in Marangoni convection because no two-dimensional lattice

can be constructed that contains the symmetries of both pat-

terns as subgroups.18 An additional difficulty arises when the

stable wave number for the patterns may vary over a range of

values ~Figs. 7 and 8!.18 Model equations can be formulated

where hexagons and squares may compete;19 however, in

this case, no direct connections can be made between the

coefficients for the model equations and the conditions of the

experiments.

An open experimental issue is the nature of instability of

square patterns for M sufficiently large. Our preliminary ob-

servations indicate that squares are transformed into disor-

dered polygonal patterns at the onset of time dependence; the

cell size continually increases with increasing M. We plan to

explore these phenomena in detail in future experiments.
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