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Secondary Instabilities of Hexagonal Patterns in a Bénard-Marangoni Convection Experiment
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We have identified experimentally secondary instability mechanisms that restrict the stable band of
wave numbers for ideal hexagons in Bénard-Marangoni convection. We use ‘‘thermal laser writing’’ to
impose long wave perturbations of ideal hexagonal patterns as initial conditions and measure the
growth rates of the perturbations. For � � 0:46 our results suggest a longitudinal phase instability
limits stable hexagons at a high wave number while a transverse phase instability limits low wave
number hexagons.
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FIG. 1. Shadowgraph image (a) of hexagons with a longitu-
dinal phase perturbation is shown with the pattern’s three roll
components (b)–(d) extracted by complex demodulation. For
the purposes of illustration, the perturbation, imposed as an
initial condition, is shown with an amplitude that is larger than
typical modulations by a factor of 8. In (a), the white edges and
dark centers of the hexagons indicate, respectively, regions of
downflow and upflow. (b) The main modulation is to the q1

rolls—note their compression and dilation. Shading has been
added to emphasize the long wave nature of the modulation—
the overall lighter areas have higher wave number than the
darker regions. (c) q2 rolls are sheared slightly by the modu-
lation. (d) The q3 rolls are modulated with the same amplitude
and phase as the q2 rolls.
For stable, spatially periodic patterns observed in
many nonequilibrium systems [1–4], the pattern typi-
cally exhibits a wave number q that is drawn from a
range of possible values, even when a given system’s
external parameters are fixed. The maximum and mini-
mum values of q are typically limited by a secondary
instability that leads to more complex states. For sta-
tionary striped patterns (rolls), the study of secondary
instability in Rayleigh-Bénard convection led to the iden-
tification of several instability mechanisms, as cataloged
by the ‘‘Busse Balloon’’ [5]. These mechanisms have a
universal character and have been associated with roll
instability in several other physical systems [6–8].
Periodic patterns of hexagons also arise in diverse physi-
cal settings, including fluid flow [9,10], chemical reac-
tions [11], nonlinear optics [12], crystal growth [13], and
granular flow [14]. However, the instability mechanisms
that constrain stable wave numbers for hexagons have not,
heretofore, been observed in experiments.

In this Letter we describe phase instabilities that limit
the stable wave number of hexagonal patterns in Bénard-
Marangoni convection experiments. These instabilities
initially appear as modulations with small wave number
k of the hexagons. Theoretical studies of amplitude equa-
tions show that as k ! 0 two different instabilities can
restrict the stable band [15,16]—a longitudinal modula-
tion with a curl-free phase vector � and a transverse
modulation with a divergence-free �. Our experiments
demonstrate that these instabilities are observable even
with finite k where significant mixing of the longitudinal
and transverse modes might occur [16].

In Bénard-Marangoni convection hexagonal convec-
tion patterns arise when a fluid with a free upper sur-
face is heated uniformly from below and cooled from
above with a sufficiently large temperature gradient. The
convective flow is driven primarily by temperature-
induced surface tension gradients (thermocapillarity) at
the liquid-gas interface and is characterized by the
Marangoni number M � �T�Td=
��, where � is the
liquid’s surface tension, �T the temperature difference
across the liquid layer, �T � d�=dT, and d, 
, �, � are,
0031-9007=04=93(12)=124502(4)$22.50
respectively, the liquid’s thickness, density, kinematic
viscosity, and thermal conductivity. With �T < 0, surface
tension gradients draw fluid from warm areas at the
liquid-gas interface to cool areas. This creates upflows
at the locally warm spots and downflows at the cool areas
[Fig. 1(a)].

The experiments are performed on a flat layer of sili-
cone oil of depth d � 0:094� 0:003 cm confined by a
Teflon sidewall ring of inner diameter 7:62� 0:003 cm
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yielding an aspect ratio of 40:5 for the convecting region.
Uniform heating is applied from below and an air gap of
thickness 0:074� 003 cm is cooled from above to set the
control parameter at � � ��M�Mc�=Mc	 � 0:46, where
Mc is the value of the Marangoni number at the onset of
convection. The liquid kinematic viscosity � is 8:25�
0:03 cS and Prandtl number Pr is 87:2� 0:3. All mea-
surements are nondimensionalized by the length scale d
and the vertical diffusion time �v � d2=� � 8:8 s.
Visualization is achieved using the shadowgraph tech-
nique (see Fig 1) [17]. Images of the patterns are digitized
and then analyzed using a variety of Fourier and complex
demodulation techniques to extract the spatial depen-
dence of the pattern wave number, amplitude and phase
[18–20]. A hexagonal pattern can be decomposed into
three component roll patterns oriented 120
 with respect
to one another. The components are labeled as in Fig. 1 by
wave vectors q1, q2, and q3.

The initial conditions of the experiment are imposed
by thermo-optically altering the thermocapillary driving
[21]. Beginning at fixed � above onset the natural pattern
selected by the system is replaced with the desired pattern
by heating multiple spatial points along the liquid-gas
interface with a scanned infrared CO2 laser beam. The
imposed hot spots become the new regions of liquid
upflow thereby establishing the pattern [Fig. 1(a)] The
process typically takes less than 10 �v, whereupon lasing
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FIG. 2. Shadowgraph image (a) of hexagons with a transverse
phase perturbation is shown with the pattern’s three roll com-
ponents (b)–(d) extracted by complex demodulation. For the
purposes of illustration, the perturbation is shown with an
amplitude that is larger than typical modulations by a factor
of 9. (b) The q1 component is unaffected by the transverse
modulation. (c) The roll component labeled by wave vector q2

that shows the shearing of the rolls in a direction transverse to
the q1 rolls. (d) The q3 component is modulated with the same
amplitude but opposite phase as the q2 component.
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is turned off. The strong thermal gradients due to the
lasing dissipate within ��v and thereafter the resulting
pattern sets the initial condition from which the subse-
quent pattern evolution is studied. Lasing is maintained
along the outer 25% of the pattern to pin cells in a
hexagonal boundary so as to prevent pattern distortion
due to creation or destruction of cells at the sidewall.

Imposing ideal hexagons (i.e., patterns with q �
jq1j � jq2j � jq3j) permits measurement of the stable
band but is insufficient to determine the mechanisms of
the secondary instabilities. The band is determined by
imposing ideal patterns at fixed �, and tracking q over
time to check for stability [21]. The imposed pattern
remains stationary for q in a stable range; however, if q
is too large or too small, the imposed pattern becomes
unstable. The boundary is taken to be the largest and
smallest q that do not change. For unstable values of q
the pattern forms penta-hepta defects at the boundaries or
within the interior. The defects propagate in such a way as
to either add or eliminate cells so that the average q is
driven into the stable band [21]. Observation of these
instability driven dynamics does not reveal the nature
of the mechanisms that cause them, unlike the case of
periodic rolls where phase instabilities such as the zigzag
instability are easily distinguished by eye [5].

The mechanisms of secondary phase instability can be
probed by applying phase perturbations to hexagonal
patterns (Figs. 1 and 2). The perturbations are character-
ized by a wave vector k and angle � measured with
respect to one of the roll wave vectors (with q1 chosen
here for convenience). In the long wavelength limit
0 30 60
−0.015

0

0.015

x

kα

(a)

0 10 20 30
−1.5

−0.075

0

t

Lo
g(

kα
)

(b)

FIG. 3. Spatial and temporal evolution of the longitudinal
phase perturbation. (a) The profile of the local wave number
of the q1 rolls (scaled by the mean value q � 2:08) is plotted at
times t � 0 (solid line), t � 13 (dashed line) and t � 27 (dot-
dashed line); thus the phase modulation adjusts the overall
wave number by a maximum of less than 1:5%. The long
wave nature of the perturbation is apparent —the modulation
wave number k � 0:14 is approximately 1=15th of the mean q.
(b) The amplitude (k�) is plotted as a function of time on a
semilog scale; the slope of this curve yields the growth rate,
which is negative for perturbations within the stable band.
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(k ! 0) the phase vector of the perturbation can be writ-
ten as � � ���2 
�3��̂
 ��2 ��3�=

���

3
p

�̂ [15,16],
where �1, �2, and �3 are terms added to the phases of
the q1, q2, and q3 rolls, respectively. In that case there are
two classes of phase perturbation: a longitudinal pertur-
bation for which �kk and a transverse perturbation for
which �?k. For � � 0 the longitudinal perturbation is
taken as �1 � i� coskx, �2 � �i 12� coskx, and �3 �

�i 12� coskx (Fig. 1), where the x axis is parallel to q1.
The result is a sinusoidal modulation of the wave number
of the q1 rolls in a direction parallel to k with amplitude
k� [Fig. 3(a)]. The perturbations to the q2 and q3 rolls
have similar modulations parallel to k but with amplitude
1
2 k�. For the transverse perturbation �1 � 0, �2 �

i�
���

3
p

=2��� coskx and �3 � �i��
���

3
p

=2� coskx. In that
case the q1 rolls are unperturbed while the q2, and q3

rolls are perturbed sinusoidally along the x axis with
amplitude �

���

3
p

=2�k�.
Perturbations applied at fixed � decay exponentially

when q is within the stable band and do so with a growth
rate that depends on q. The growth rate is measured by
first applying the perturbation as an initial condition and
then tracking the evolution of its amplitude. The loga-
rithm of the amplitude plotted against time fits reason-
ably well to a straight line [Fig. 3(b)] indicating that the
perturbations decay exponentially as expected for distur-
bances that are sufficiently small. The slope obtained
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FIG. 4. Plots of growth rate vs wave number for the trans-
verse perturbation (a) and the longitudinal perturbation (b) at
fixed modulation wave number k � 0:14. The dashed lines
represent experimentally measured boundaries of the stable
band measured previously for � � 0:46. At that value of �
the boundaries are in the 0< �< 0:5 range where they were
found to approximately coincide with theoretical predictions by
Bestehorn for Bénard-Marangoni convection [10,21]. (a) The
growth rate for the transverse perturbation appears to go to
zero at the low wave number boundary. (b) The growth rate of
the longitudinal perturbation appears to sharply decrease and
trend to zero at the high wave number boundary. The data are
shown for � � 0 (�,�), � � �=18 (�), � � �=12 (�), � �
�=6 (�), � � �=3 (4), and � � 2�=3 (5).
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from a linear least squares fit yields the perturbation’s
growth rate.

Secondary instabilities are identified by observing the
behavior of their growth rates at the boundaries of the
stable band. The growth rate of the transverse perturba-
tion is found to remain relatively constant for 2:2 & q &

2:55 but starts to gradually decrease in magnitude for q &

2:2 until it crosses zero at the low wave number boundary
[Fig. 4(a)]. This suggests that the divergence-free trans-
verse perturbation becomes unstable at the low wave
number side of the stable band and is thus responsible
for the instability at that boundary. At the high wave
number boundary the magnitude of the growth rate
does not reduce, i.e., the transverse modulation does not
appear to restrict the band at high wave number. For the
longitudinal phase perturbation the measured growth rate
is finite at the low wave number boundary and remains
constant for 2:05 & q & 2:4. As q approaches the high
wave number boundary the change in growth rate is not
slow as in the transverse case, but becomes increasingly
sharp the closer q gets to the boundary, and appears to
trend to zero growth rate at the boundary [Fig. 4(b)], i.e.,
the longitudinal perturbation may be the secondary in-
stability that restricts the stable band at high wave
number.

Amplitude equation analyses [16,22] suggest that
phase perturbations with finite k are neither purely trans-
verse nor purely longitudinal, i.e., for longitudinal per-
turbations k is not parallel to � and for transverse
perturbations k is not perpendicular to �. This ‘‘mixing’’
of phase perturbations is a function of � and is in general
nonzero except for � � n�=6, where n is an integer. A
consequence of this is that the growth rates of phase
perturbations are also functions of �. In the experiments,
with k � 0:14 and at two different values of q in the
stable band, growth rates were measured for � � n�=6,
for n � 1, 2, and 4. The results were not significantly
different (Fig. 4) indicating no mixing, consistent with
theory [16]. For � � �=12 and �=18 where mixing is
expected to be strong, the growth rates were also not
significantly different, suggesting that k is small enough
that phase mixing is weak.

For a given q within the stable band, perturbations
become more strongly damped as k is increased. How-
ever, the trend of the growth rate toward zero at the low
wave number boundary for transverse perturbations, and
at the high wave number boundary for longitudinal per-
turbations appears unchanged (Fig. 5). The growth rates
of perturbations with k < 0:14 are small and could not be
measured reliably; however, the trend of the data suggests
that decreasing k results in weaker damping, i.e., the least
stable perturbations are of long wavelength.

Mechanisms other than phase instabilities might also
play a role in limiting the stable wave number band. The
growth rate data conclusively show that the transverse
perturbation becomes unstable at the low q boundary. The
124502-3
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FIG. 5. Plots of growth rate vs wave number with varied
modulation wave number k for the transverse perturbation (a)
and the longitudinal perturbation (b). (a) The growth rate of
the transverse perturbation appears to go to zero at the low
wave number boundary for all k. (b) Like the case of k � 0:14
the growth rate of the longitudinal perturbation appears to
decrease and trend to zero at the high wave number boundary
for k � 0:30 and k � 0:45. Data points for q close to the
boundaries could not be obtained for large k because the
modulations are strong enough to create regions where the
local wave number falls outside the stable band, leading to
pattern breakdown.
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data are less convincing at the high q boundary where the
growth rates of the longitudinal perturbation are trending
toward zero so rapidly the resolution of our current ex-
periments is insufficient to resolve very small growth
rates near the boundary. In principle, amplitude instabil-
ities could limit the stable band at high q; however,
theoretical work on the Bénard-Marangoni convection
[10] suggests that when buoyancy effects are weak, am-
plitude instabilities play no role in secondary instability
of hexagons.

Some insight into the � dependence of secondary in-
stability mechanisms can be gained by comparing these
results with previous measurements of the stable wave
number band [21]. The measured low q boundary does not
change significantly for 0< �< 1 suggesting that the
transverse phase instability is the mechanism that limits
the stable band for that range. Similarly, the high q
boundary remains unchanged for 0:4 & � < 1, suggesting
the longitudinal phase instability governs the high q
limit. However, for � & 0:4 the high q limit depends
strongly on �. Thus, by analogy with the Busse balloon
for straight rolls, where a change in the nature of the �
dependence of the stability boundaries can indicate tran-
sitions between different mechanisms, it is possible that
the dominant instability mechanism may change (say
from a longitudinal to a transverse phase instability) as
� is decreased below 0:4. Future experimental work com-
plemented by theoretical and numerical studies at the
same parameter values would be useful to map the de-
124502-4
pendence of secondary instability mechanisms on � and
elucidate the relative importance of phase and amplitude
instabilities.
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C. Pérez-Garcı́a, Phys. Rev. Lett. 65, 2370 (1990).

[21] D. Semwogerere and M. F. Schatz, Phys. Rev. Lett. 88,
054501 (2002).

[22] M. M. Sushchik and L. S. Tsimring, Physica (Amsterdam)
74D, 90 (1994).
124502-4


