
Integrating Numerical Computation into the Modeling Instruction Curriculum
Marcos D. Caballero, John B. Burk, John M. Aiken, Brian D. Thoms, Scott S. Douglas, Erin M. Scanlon, and

Michael F. Schatz

Citation: The Physics Teacher 52, 38 (2014); doi: 10.1119/1.4849153
View online: http://dx.doi.org/10.1119/1.4849153
View Table of Contents: http://scitation.aip.org/content/aapt/journal/tpt/52/1?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Measuring the Speed of Sound Using Only a Computer
Phys. Teach. 51, 295 (2013); 10.1119/1.4801359

Understanding student computational thinking with computational modeling
AIP Conf. Proc. 1513, 46 (2013); 10.1063/1.4789648

Computer-assisted experiments with an inductance coil
Am. J. Phys. 79, 1180 (2011); 10.1119/1.3610176

Integrating computation into the undergraduate curriculum: A vision and guidelines for future developments
Am. J. Phys. 76, 327 (2008); 10.1119/1.2837811

Integrating computational activities into the upper-level Paradigms in Physics curriculum at Oregon State
University
Am. J. Phys. 76, 340 (2008); 10.1119/1.2835052

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.207.140.200 On: Fri, 02 May 2014 21:41:32

http://scitation.aip.org/content/aapt/journal/tpt?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/219095570/x01/AIP/CiSEad_TPTCovAd_1640Banner_04_16thru04_22_2014/CiSE_sharpen_1640x440.jpg/7744715775314c5835346b4141412b4b?x
http://scitation.aip.org/search?value1=Marcos+D.+Caballero&option1=author
http://scitation.aip.org/search?value1=John+B.+Burk&option1=author
http://scitation.aip.org/search?value1=John+M.+Aiken&option1=author
http://scitation.aip.org/search?value1=Brian+D.+Thoms&option1=author
http://scitation.aip.org/search?value1=Scott+S.+Douglas&option1=author
http://scitation.aip.org/search?value1=Erin+M.+Scanlon&option1=author
http://scitation.aip.org/search?value1=Michael+F.+Schatz&option1=author
http://scitation.aip.org/content/aapt/journal/tpt?ver=pdfcov
http://dx.doi.org/10.1119/1.4849153
http://scitation.aip.org/content/aapt/journal/tpt/52/1?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/tpt/51/5/10.1119/1.4801359?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4789648?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/79/11/10.1119/1.3610176?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/76/4/10.1119/1.2837811?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/76/4/10.1119/1.2835052?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/76/4/10.1119/1.2835052?ver=pdfcov

38	 The Physics Teacher ◆ Vol. 52, January 2014 DOI: 10.1119/1.4849153

curriculum to include real-world problems that are otherwise
inaccessible using a purely analytic approach.

Modeling Instruction and numerical
computation

The Modeling Instruction curriculum employs a coher-
ent framework of scientifically testing the limits of physical
models (i.e., “the modeling cycle”) by engaging students in
the construction and comparison of different representations
of physical phenomena.6,7 Each modeling cycle is built on a
set of modules; these modules promote scientific thinking
through observation, experimentation, and discourse. By ob-
serving physical phenomena, representing those phenomena
in a variety of ways, and making predictions of similar but
not-yet-observed phenomena, students construct a working
model that is able to fully describe the phenomena they ob-
serve. A full description of the modeling cycle is available in
Refs. 6 and 7. Because of its emphasis on models, its focus on
inquiry, and its use of multiple representations, the Model-
ing Instruction curriculum is effective not only in teaching
students physical concepts,5 but also in encouraging partici-
pation in class,8 in helping align students’ views about the
nature of science with expert views,9 and in promoting stu-
dents’ self-efficacy.10

Modeling Instruction treats each force and motion model
as distinct, but the common thread of predicting motion us-
ing Newton’s second law and kinematics unifies them. The
computational algorithm used to predict motion likewise
retains the distinctions between the force and motion models,
but highlights the commonality among them: namely, that
such models differ only in the net force exerted on the system
and in their particular initial conditions.

Given knowledge of the system’s initial position and veloc-
ity, as well as the net force on the system, the algorithm for
predicting motion can be described as a set of rules applied
locally in space and time: (1) At a given instant in time t, com-
pute the net force, Fnet, acting on the system; (2) For a short
time ∆t later, compute the new velocity of the system using
Newton’s second law; (3) At the same new time (t + ∆t), com-
pute the new position of the object using this updated veloc-
ity; and (4) Repeat steps (1)-(3) starting at the updated time
t + ∆t. Formally, the iterative application of steps (1)-(3) is, in
effect, explicit (Euler-Cromer) numerical integration11 of the
equations of motion for Newtonian mechanics (∆v = a ∆t =
Fnet/m ∆t, ∆x = v ∆t).

The mathematics behind iteratively predicting motion in

Integrating Numerical Computation into
the Modeling Instruction Curriculum
Marcos D. Caballero, Michigan State University, East Lansing, MI

John B. Burk, St. Andrew’s School, Middletown, DE

John M. Aiken and Brian D. Thoms, Georgia State University, Atlanta, GA

Scott S. Douglas, Erin M. Scanlon, and Michael F. Schatz, Georgia Institute of Technology, Atlanta, GA

Numerical computation (the use of a computer to
solve, simulate, or visualize a physical problem) has
fundamentally changed the way scientific research

is done. Systems that are too difficult to solve in closed form
are probed using computation. Experiments that are impos-
sible to perform in the laboratory are studied numerically.
Consequently, in modern science and engineering, computa-
tion is widely considered to be as important as theory and
experiment.

Unfortunately, most high school students today are never
introduced to computation’s problem-solving powers. Com-
puter usage is widespread in high school STEM courses (e.g.,
obtaining lab data using computer acquisition hardware/soft-
ware), but such usage rarely involves students constructing a
computational representation of a science problem. The lack
of computation in domain-specific STEM courses is not ad-
dressed in most high school computer science courses, which
typically focus on programming and procedural abstractions
rather than solving science problems. In recognition of these
shortcomings, the recently published National Research
Council’s (NRC) framework for next-generation K-12 science
standards lists “computational thinking” as one of the fun-
damental “practices” that should be incorporated into future
K-12 science curricula.1 The framework acknowledges that
experience with computational thinking is crucially impor-
tant, not only for developing future scientists and engineers,
but also for providing all citizens with general insight into the
science behind proposed solutions to technically complex so-
cial problems.

In this article, we describe a way to introduce high school
physics students with no background in programming to
computational problem-solving experiences. Our approach
builds on the Modeling Instruction curriculum, which is cur-
rently used in approximately 10% of U.S. high school physics
classrooms.2 The Modeling Instruction approach emphasizes
the practice of “developing and using models” highlighted
by the NRC K-12 science standards framework.1 Coupling
computational experiences with Modeling Instruction en-
ables the modeling practice and the computational thinking
practice to reinforce each other. To achieve this synergy, we
taught ninth-grade students to use the VPython programming
environment3,4 within a Modeling Instruction-based phys-
ics course.5 We found that numerical computation within the
Modeling Instruction curriculum provides coherence among
the different models within the curriculum, links the various
representations that the curriculum employs, and extends the

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.207.140.200 On: Fri, 02 May 2014 21:41:32

The Physics Teacher ◆ Vol. 52, January 2014 39

quire a familiarity with the tools of modern scientists and
engineers. Moreover, as students gain experience with nu-
merical computation, they begin to build “computer models”
as part of their normal practice of constructing and testing
models, which further emphasizes that models are what sci-
entists and engineers use to describe physical phenomena.
Numerical computation can be an effective tool for exploring
the limits and refining the physical model in question. Stu-
dents can explore the influence of such inputs on the resulting
motion by changing parameters in the computational model.
They can engage in prediction and confirmation by reviewing
the animation and graphical output that their computational
model produces.

Developing a set of computational tools
Numerical computation can provide additional benefits to

student understanding of science and, in particular, physical
phenomena. However, the tools that students use to numeri-
cally model such phenomena must include no more pro-
gramming than is necessary. Their physics class is not a com-
puter science course; hence, the program statements that stu-
dents write should only reflect the representations with which
they are becoming familiar. For our implementation, we used
the VPython programming environment and employed it
to focus students’ computational model development on the
physics of the particular system and the representations of
that model. Moreover, we have developed a module, PhysUtil,
for enhancing aspects of performing simulations (e.g.,
MotionMap in Fig. 1). This software is publicly available.4,13

VPython is based on the Python programming language
and provides an environment to write simple programs that
yield robust three-dimensional simulations (Fig. 1). The
VPython programming environment was designed to limit
the programmatic statements needed to generate highly
visual three-dimensional simulations. Students who receive
sufficient computational instruction using VPython are able
to successfully model novel situations.14,15

Figure 2 shows sample VPython code that models the
motion of a fan cart subject to a single constant force. To
construct this model, ninth-grade physics students created
the objects and assigned their positions and sizes (lines 6–7),
identified and assigned the other given values and relevant
initial conditions (lines 9–10 and 12–14), calculated the net
force acting on the object of interest (line 23), and updated
the velocity and position of this object in each time step
(lines 24 – 26). This code illustrates the algorithm students
are taught to predict the motion of objects given the model
for their interactions.11 The code shown in Fig. 2 produces
a highly visual simulation generated from a few program
statements. This program represents what students are able
to construct after instruction in our ninth-grade conceptual
physics course.

The program shown in Fig. 2 makes use of the PhysUtil
module. Developed by a team of Georgia Tech computer sci-
ence majors, the PhysUtil module was designed to further

this manner is well within the capabilities of most high school
physics students (in either algebra-based or calculus-based
courses); arguably, it is more accessible mathematically to stu-
dents than the analytic methods currently used, even for the
simplest cases (e.g., constant acceleration motion). Iterative
motion prediction is usually too labor-intensive to perform
by hand, but a computer can easily handle these calculations.
Moreover, this same computational algorithm can be used to
simulate the vast majority of physical systems at a high school
level, further reducing the barrier for introductory students
to explore complex systems.

Numerical computation offers significant pedagogical
advantages. Computation highlights the relationship between
the different physics models in the Modeling Instruction pro-
gram (e.g., the no-forces model, the balanced-forces model,
and the unbalanced-forces model). To produce simulations
with qualitatively different behavior, we simply change the
initial conditions (e.g., from 1D to 2D motion) or the net
force (i.e., from constant to constantly changing). For exam-
ple, we can generalize the balanced-forces model to the un-
balanced forces model by inserting a constant net force into
the computational model. Furthermore, we can extend the
unbalanced-forces model to parabolic motion model by giv-
ing the object an initial velocity in both x- and y-directions.

Numerical computation provides dynamic animation and
visualization of representations that are otherwise static in
the Modeling Instruction curriculum. The output of numeri-
cal computation is continuously updating graphs (analogous
to a chart recorder) and animations, not just numbers. The
visualization provided by a numerical model is of paramount
importance; certain aspects of visualization help students
communicate a more coherent picture of their understand-
ing.12 These graphical and diagrammatic descriptions of the
physical model, which might otherwise form the sole basis of
the students’ exposure to the model, are reproduced precisely
by the computational model. Furthermore, the linking of rep-
resentations can be done quite easily with a few simple lines
of code (see next section, “Developing a set of computational
tools”).

These numerical models are not limited to analytically
tractable solutions. This allows students to explore their
real-world, rather than laboratory-constructed, observa-
tions. Numerical computation provides a platform to focus
class discussion on modeling and investigation without the
undue burden of sophisticated mathematical techniques. For
example, students observe objects that experience drag in
their daily lives (try kicking a soccer ball!), and yet a model
of this phenomenon is not explored in most introductory
physics courses. A model of turbulent drag is a simple model
to construct and describe. We have found that students can
construct a model for drag, make sense of the model’s predic-
tions, and compare those predictions to those of the constant
acceleration model (see section below, “A typical activity:
Modeling a kicked soccer ball”).

By learning to use numerical computation, students ac-

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.207.140.200 On: Fri, 02 May 2014 21:41:32

40	 The Physics Teacher ◆ Vol. 52, January 2014

limit the code-writing needed to create highly visual simula-
tions and to enhance the functionality of VPython to include
features of the Modeling Instruction curriculum (e.g., motion
maps) without the additional burden of writing complex
program statements. At present, we have added four Python
classes with PhysUtil: PhysAxis, PhysTimer, MotionMap, and
PhysGraph. Each of these classes requires a single initializa-
tion line (lines 16–19 in Fig. 2), which can be provided to
the students, and a single update line in the calculation loop
(lines 28, 31, and 33). Detailed documentation on each of
these classes and use cases are available online.13

To illustrate how our particular brand of numerical com-
putation fits into a typical Modeling Instruction course, we
present an activity used in a ninth-grade physics course dur-
ing the second half of the semester. Students employed and
extended the parabolic motion model for the motion of an
Angry Bird16 to characterize the motion of a kicked soccer
ball.

A typical activity: Modeling a kicked
soccer ball

In our modified Modeling Instruction course, we present-
ed projectile motion after students had studied five previous
models.7 Students discovered that the constant acceleration
model was insufficient to describe the motion of objects in
two dimensions subject to the ordinary gravitational force,
Fgrav = mg. In fact, an appropriate description required the
use of two models: the constant acceleration model in the
vertical direction and the constant velocity model in the hori-
zontal direction. Typically, the parabolic motion model rep-
resents the capstone of the Modeling Instruction curriculum’s
treatment of force and motion. In our treatment, we used
numerical computation to investigate the parabolic motion
model, to compare its predictions to real-world observations,
and to resolve the limited predictions of this model by ex-
tending the model to include air-resistance drag.

Students often collect data from a lab experiment to moti-
vate the development of a new model, but it is also possible to
collect data from something that is itself a model (e.g., a com-
puter game). We motivated the parabolic motion model by
showing students a snapshot of the trajectory of a bird from
the popular Angry Birds video game (Fig. 3). From this vector
construction, students concluded that there must be a force
acting on the Angry Bird that points vertically downward. To
investigate this claim, we collected video data of Angry Birds
flying across the screen and then imported this data into
Tracker, a free and open-source video tracking software pack-
age,17 where the motion of the Angry Bird was logged and
plotted. Tracker allows the user to compute the velocity and
acceleration of the tracked particle in each coordinate’s direc-
tion and to plot those quantities. From their analysis, students
determined how to compose the parabolic motion model.

In our course, students also generalized the constant-
acceleration computational model that they had developed to
the parabolic motion model. Students had previously devel-

Fig. 1. The visual output of a VPython+PhysUtil model of a soccer
ball kicked in the air (without drag) constructed by three ninth-
grade students. PhysTimer appears in the upper-right corner
(blue text). PhysAxis appears under the ground (blue line and
text). MotionMap generated the “breadcrumbs” for the motion
with time stamps and integer ordering (red spheres and red text).

Fig. 2. A student’s VPython program that models the motion of
a fan cart subject to a constant force (constant acceleration/
unbalanced forces model). Green boxes highlight where we focus
students’ attention during model construction.

Fig. 3. A vector construction to determine the direction
of the acceleration in the Angry Bird’s world. Fair use
reproduction (non-profit educational illustration).

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.207.140.200 On: Fri, 02 May 2014 21:41:32

The Physics Teacher ◆ Vol. 52, January 2014 41

does not supplant the typical activities in which students
engage; it enhances and extends those activities.15 We are
making the activities more relevant to students by including
real-world examples, emphasizing the concept of models, il-
lustrating the generality of physical principles, and providing
a platform for future learning in numerical computation.

Reflections
We have used numerical computation in a ninth-grade

Modeling Instruction-based honors physics course in a pri-
vate school setting for the last two years, each year compris-
ing a different set of 15-18 students. In that time, we have
observed several challenges to student learning and broader
adoption.

Students find debugging their programs difficult; that is,
they have trouble determining whether they have made a
coding error or a physics error and how to deal with that is-
sue. This is likely due to the somewhat loose integration of
computational modeling in their physics course. Presently,
the length of time between exposures to VPython is too long,
and students spend too much time relearning old program-
ming skills. The course requires tighter integration of compu-
tational modeling into each assignment and modeling cycle.
We have begun providing scaffolded code and performing
live coding exercises, both of which are best practices from
computer science education. Additionally, we have started
to develop our own studies of student thinking and practices
(Refs. 14 and 15) to improve instruction.

Resources for computational instruction are not wide-
spread; most materials were developed by Georgia Tech’s
Physics Education Research group in conjunction with the
classroom teacher. However, a virtual community has begun
building resources for math and science teachers interested
in introducing students to numerical computation. Many
of these computational thinking resources are available
online.18 Not all of these resources are tied to the Model-
ing Instruction curriculum, nor are most resources physics
related, but the support of such a community could produce
additional high-quality resources and can provide support
for early adopters, interested teachers, and, most importantly,
our students.

Acknowledgments
The authors would like to thank the students and teachers
who have provided constructive feedback on this project
over the last few years. Particular thanks to Georgia Tech
graduates Cory Johnson, Sebastian Marulanda, Raschel
Mead, and Colin Schoeneman for their work to develop
PhysUtil.

References
1. 	 H. Quinn, H. Schweingruber, and T. Keller, editors for the

Committee on Conceptual Framework for the New K-12
Science Education Standards, National Research Council, A
Framework for K-12 Science Education: Practices, Crosscut-

oped a fully “vector compliant” program to model constant
acceleration in either the x- or y-direction (e.g., lines 23–24
in Fig. 2). This generalization emphasizes the interconnected
nature of different force and motion models in the Modeling
Instruction curriculum. The generalization is quite simple
because, in a computational model, the change between dif-
ferent types of motion under constant acceleration is simply a
change of the initial conditions. By giving the object an initial
velocity with non-zero horizontal and vertical components,
the student can very easily move from modeling an object
dropped from a known height (for example) to an object fired
into the air at a known angle.

The new computational model linked the different repre-
sentations of the physical system and provided instant visual
feedback about students’ physical model. Using PhysAxis,
PhysTimer, and PhysGraph, students reconstructed the An-
gry Bird’s motion. Their computational model allowed stu-
dents to immediately observe if their physical model had any
inconsistencies (e.g., unexpected motion in the horizontal
direction) or if their computational model had any unrealistic
effects (e.g., motion not terminating at the ground level). The
latter led to a nice discussion of the limitations of computa-
tional models; they can only do what you have told them to
do. Using MotionMap, students constructed an animated mo-
tion map to observe how components of the force or velocity
change with time. With a computational model, students
were able to systematically adjust parameters (e.g., the Angry
Bird’s mass, size, and initial velocity) to observe their effects
on the animation; students paid particular attention to their
graphs of kinematic and dynamic quantities and their motion
maps. Students reported their observations to their peers.

Students were then confronted with the following chal-
lenge: “We have learned that the constant acceleration model
can help us describe how an object moves in one dimension,
and that the parabolic motion model can help us in two di-
mensions. What about a soccer ball that you kick into the
air? How can we model this situation?” Typically, this would
be dealt with using the parabolic motion model (Fig. 1). By
using the computational modeling, we can push this further.
“What about real effects of the air? Do any of these models
still apply to the motion?”

Students concluded from video analysis of a kicked ball
(similar to the Angry Birds analysis) that there were accelera-
tions in both the horizontal and vertical directions. Moreover,
they observed that these accelerations changed with time.
Students proposed air resistance as the culprit for this change.
However, the model for air resistance (even linear drag) does
not lend itself to analytical solutions achievable by ninth-
grade students; the mathematics is too sophisticated. Compu-
tational modeling allowed us to insert a velocity-dependent
drag force on the ball, and then to use the model to accurately
predict the trajectory and landing point for the soccer ball.
The motion of real projectiles is no longer intractable to con-
ceptual physics students.

Using numerical computation in the way we described

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.207.140.200 On: Fri, 02 May 2014 21:41:32

42	 The Physics Teacher ◆ Vol. 52, January 2014

Research Conference 2010, Volume 1289 of AIP Conference
Proceedings, Portland, OR, July 21-22, 2010, pp. 289-292.

11. 	 A. Cromer, “Stable solutions using Euler approximations,” Am.
J. Phys. 49, 455 (1981).

12. 	 M. Dancy and R. Beichner, “Impact of animation on assess-
ment of conceptual understanding in physics,” Phys. Rev. ST
Phys. Educ. Res. 2, 010104 (2006).

13. 	 http://code.google.com/p/python-physutil/.
14. 	 M. D. Caballero, M. A. Kohlmyer, and M. F. Schatz, “Imple-

menting and assessing computational modeling in introducto-
ry mechanics,” Phys. Rev. ST Phys. Educ. Res. 8, 020106 (2012).

15. 	 J. M. Aiken, M. D. Caballero, S. S. Douglas, J. B. Burk, E. M.
Scanlon, B. D. Thoms, and M. F. Schatz, “Understanding stu-
dents computational thinking with computational modeling,”
in Physics Education Research Conference 2012, Volume 1513 of
AIP Conference Proceedings, Philadelphia, PA, Aug. 1-2, 2012,
pp. 46-49.

16. 	 http://www.rovio.com/.
17. 	 http://www.cabrillo.edu/~dbrown/tracker/.
18. 	 http://www.google.com/edu/ect/.

Marcos D. Caballero, Michigan State University, East Lansing, MI
48824; caballero@pa.msu.edu

ting Concepts, and Core Ideas (The National Academies Press,
2012).

2.	 E. Brewe, “Modeling theory applied: Modeling Instruction in
introductory physics,” Am. J. Phys. 76, 1155 (2008).

3.	 D. Scherer, P. Dubois, and B. A. Sherwood, “VPython: 3D in-
teractive scientific graphics for students,” Comput. Sci. Eng. 2,
56 (2000).

4. 	 http://www.vpython.org/.
5. 	 J. Jackson, L. Dukerich, and D. Hestenes, “Modeling Instruc-

tion: An effective model for science education,” Sci. Educ. 17,
10 (2008).

6. 	 D. Hestenes, “Toward a theory of modeling instruction,” Am. J.
Phys. 55, 440 (1987).

7. 	 D. Hestenes, M. Wells, and G. Swackhamer, “A modeling meth-
od for high school instruction,” Am. J. Phys. 63, 606 (1995).

8. 	 E. Brewe, V. Sawtelle, L. H. Kramer, G. E. O’Brien, I. Rodriguez,
and P. Pamelá, “Toward equity through participation in Model-
ing Instruction in introductory university physics,” Phys. Rev.
ST Phys. Educ. Res 6, 010106 (2010).

9. 	 E. Brewe, L. Kramer, and G. O’Brien, “Modeling Instruction:
Positive attitudinal shifts in introductory physics measured
with CLASS,” Phys. Rev. ST Phys. Educ. Res. 5, 013102 (2009).

10. 	 V. Sawtelle, E. Brewe, and L. H. Kramer, “Positive impacts of
Modeling Instruction on self-efficacy,” in Physics Education

Visual Physics
Hubert Biezeveld,
Retired physics teacher
Zwaag, The Netherlands

We invite readers to submit their own photos
of “visual physics.” Email pictures to the
editorial office at tpt@appstate.edu.

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.207.140.200 On: Fri, 02 May 2014 21:41:32

