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Algebraic topology shomologyd is used to analyze the state of spiral defect chaos in both laboratory

experiments and numerical simulations of Rayleigh-Bénard convection. The analysis reveals

topological asymmetries that arise when non-Boussinesq effects are present. The asymmetries are

found in different flow fields in the simulations and are robust to substantial alterations to flow

visualization conditions in the experiment. However, the asymmetries are not observable using

conventional statistical measures. These results suggest homology may provide a new and general

approach for connecting spatiotemporal observations of chaotic or turbulent patterns to theoretical

models. © 2007 American Institute of Physics. fDOI: 10.1063/1.2800365g

I. INTRODUCTION

Recent technical advances in experimental fluid mechan-

ics now make it possible to measure complex dynamical be-

havior with high resolution in space and time.
1
Similarly,

modern computational fluid dynamics methods permit mod-

elling of complex chaotic and turbulent flows.
2
The data sets

produced by such experiments and simulations can be enor-

mous; as a result, interpreting the results becomes a signifi-

cant challenge. In particular, characterizing the geometric

properties of complex spatiotemporal patterns in large data

sets has been difficult because, to date, no general method-

ology has existed for extracting geometric signatures.

Algebraic topology provides a tool for describing global

geometric properties of structures. Devised by Poincaré
3
for

use in global nonlinear analysis, algebraic topology origi-

nally used as input analytically defined objects se.g., level

sets of differentiable functionsd to produce an output in the

form of algebraic quantities which convey topological infor-

mation about the input. In modern times, input objects can be

expressed either as simplicial or cubical complexes. In fluid

mechanics and in most fields of science and engineering,

cubical representations often arise naturally in both experi-

ments sraw image data represented as square pixels or cubic

voxelsd and simulations sfields computed at gridpoints on

square or cubic latticesd. A package of computer programs

has been developed to perform computations of algebraic

topology scomputational homologyd on cubical complexes in

arbitrary dimensions. This suite of tools, called CHOMP

sComputational Homology Projectd is freely available for

download via the Web.
4

We report here the first use of computational homology

to characterize data obtained from a laboratory experiment.

We analyze Rayleigh-Bénard convection in the state known

as spiral defect chaos,
5
which is widely considered a para-

digm for the little understood phenomenon known as spa-

tiotemporal chaos ssee, for example, Ref. 6d. In planform,

patterns of spiral defect chaos, which are observed just above

convective onset in low Prandtl number s,1d fluids, are

composed of convection rolls deformed into numerous rotat-

ing spirals and riddled with dislocations, disclinations, and

grain boundaries. Spiral defect chaos has been quantitatively

described by a wide variety of approaches, including struc-

ture factors, correlation lengths and times as well as wave

number, spectral, and spiral number distributions
7

ssee also

Ref. 1 and references thereind.

Thermal convection is frequently modeled using the

Boussinesq approximation, which assumes that the tempera-

ture dependence of the fluid properties can be neglected, ex-

cept for the temperature-induced density difference in the

buoyant force that drives the flow. However, non-Boussinesq

effects can arise in flows both in the laboratory and in natural

settings. At convective onset, the subcritical bifurcation to

hexagonal patterns is a clear signature of non-Boussinesq

effects.
8

sStraight convection rolls arise at onset from a su-

percritical bifurcation in Boussinesq Rayleigh-Bénard

convection.
9
d Non-Boussinesq effects can be described quan-

titatively using perturbation theory near onset; in this regime

they are characterized by parameter Q introduced by Busse.
8

Values of Qù ,1 indicate significant non-Boussinesq ef-

fects; Q=0 for Boussinesq convection. As changes in control

parameter move the convective flow well away from onset,

non-Boussinesq effects typically become more important and
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are more difficult to characterize theoretically and experi-

mentally.

II. EXPERIMENTAL PROCEDURE

We measure convective flow in a horizontal layer of

compressed s3.2 MPa absolute pressured CO2 gas of depth

d=0.0690±0.0005 cm. The layer is bounded above by a

5 cm thick sapphire window and below by 1 cm thick gold-

plated aluminum mirror. The lateral walls are circular,

formed out of an annular stack of filter paper sheets 3.80 cm

in diameter. An electrical resistive heater is used to heat the

bottom mirror to a temperature of Th, and the top window is

cooled to a fixed temperature of Tc=21.20±0.02 °C by cir-

culating chilled water. When the temperature difference, i.e.,

DT=Th−Tc, across the gas exceeds a critical temperature dif-

ference DTc=4.0±0.1 °C, the onset of fluid motion occurs.

The Prandtl number Pr is 0.97. In the experiments, the sys-

tem control parameter, the reduced Rayleigh number e
= sDT−DTcd /DTc, is increased above onset through a range

where spiral defect chaos occurs. The characteristic time

scale, the vertical diffusion time t
v
, is approximately 2 s.

The flows are visualized using the shadowgraph

technique.
10
Time series of shadowgraph images fFigs. 1sad

and 1sbdg with a spatial resolution of 5153650 pixels are

captured under computer control at a rate of 11 Hz using a

12-bit digital camera interfaced to a frame grabber. The im-

ages are prepared for analysis by subtracting a background

image of the fluid below onset and using digital Fourier fil-

tering to remove high wave number components due to cam-

era spatial noise. The median value of intensity for all pixels

in the image is then determined and used as a typical thresh-

old to characterize each pixel as describing either hot upflow

or cold downflow in the convection pattern. The resulting

time series of thresholded 1-bit images are used for comput-

ing homology.

III. NUMERICAL SIMULATIONS

Our direct numerical simulations of the Boussinesq

equations employ a pseudospectral code developed by Pesch

and co-workers.
11,12

The code uses Fourier modes in the

horizontal direction and appropriate combinations of trigono-

metric and Chandrasekhar functions that satisfy the top and

bottom boundary conditions in the vertical direction.
8
All

runs are performed with six vertical modes and 1283128

horizontal Fourier modes in a square domain with side length

equal to 16 times the pattern wavelength at convective onset.

The time step is typically t
v
/500. For our analysis, the flows

are represented by 1283128 images fFigs. 1scd and 1sddg of

the temperature field or the vertical velocity component. The

images are typically stored every 2t
v
. The median value of

the flow field quantity stemperature or vertical velocityd for

each image is determined and used as a threshold to charac-

terize each gridpoint as describing hot upflow or cold down-

flow. Thus, as in the laboratory experiment, the resulting

time series of thresholded 1-bit images are used for comput-

ing homology.

In the simulations, we describe non-Boussinesq effects

arising from the temperature dependence of material proper-

ties by a Taylor expansion truncated at leading order beyond

the Boussinesq approximation. The simulations are per-

formed at constant mean temperature sTh+Tcd /2; the expan-

sion is carried out about the mean temperature. In this case,

the parameter Q ssee Ref. 8d is given by

Q = o
i=0

4

gi
c
Pi, s1d

where the quantities Pi are linear functions of Pr
−1, and the

non-Boussinesq coefficients gi
c give the difference of the re-

spective fluid properties across the layer at threshold se=0d.

For simulations away from onset se.0d, the e dependence

of non-Boussinesq effects is characterized by coefficients

gi=gi
cs1+ed. sSee Ref. 13 for more details.d In non-

Boussinesq simulations, all the gi
c are retained, while in the

Boussinesq simulations, gi
c are set to 0. In all simulations, we

fix e=1.4 and set Pr=0.8.

IV. RESULTS

Formally, homology is computed for a topological space

X of N dimensions by systematically assigning a sequence of

Abelian groups HksXd sk=0,1 ,2 , . . . ,N−1d to X. For our

purposes, it is sufficient to take Hk to be products of the

integers, i.e., HksXd=ZbksXd, where the integer dimensions of

the groups bksXdù0 are also known as the Betti numbers. In

this work we focus solely on bksXd as the output of the

homological analysis; each bksXd describes a topological

FIG. 1. sColor onlined Images of spiral defect chaos convection are shown

from laboratory experiments sa, bd and numerical simulations sc, dd. Shad-

owgraph images from the experiments illustrate the convective flows at sad

e=1.0 and sbd e=2.5. The midplane temperature field is shown at e=1.4 for
simulations carried out under scd Boussinesq sQ=0d and sdd non-Boussinesq

sQ=4.5d conditions. In all cases, dark regions in the images indicate the hot

upflows and bright regions indicate cold downflows in the convective

patterns.
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property of X. Thus, the net result of this analysis is the

characterization of X by a set of N non-negative integers.

sSee Ref. 4 for more details.d

From each 1-bit image in time series from either experi-

ments or simulations, two distinct, topological spaces are

obtained: Xh, where the hot upflow pixels have a nonzero

value, and Xc, where the cold downflow pixels have a non-

zero value. Xc and Xh, which are two-dimensional, are input,

in turn, into the homology codes, which subsequently output

two Betti numbers for each space: b0h, b1h for the hot up-

flows, and b0c, b1c for the cold downflows. b0h sb0cd counts

the number of distinct components; i.e., the number of re-

gions of hot upflow scold downflowd that are separated from

similar regions in a given pattern Xh sXcd fFigs. 2sad and

2sbdg. b1h sb1cd counts the number of holes in the hot up-

flows scold downflowsd in a given pattern Xh sXcd fFig. 2scd

and 2sddg. With the package CHOMP, computing the homol-

ogy of Xc and Xh corresponding to each image takes about

1 s on a 2.2 Ghz CPU.

Figure 2 shows a striking result: in the experiments, hot

upflows are topologically quite distinct from cold down-

flows. Specifically, there are more cold downflow compo-

nents than hot upflow components sb0c.b0hd. Moreover, the

hot upflow regions contain more holes than the cold down-

flow regions sb1h.b1cd. This distinction is not revealed us-

ing standard statistical measures of the pattern. For example,

the mean area occupied by upflow is equal to that occupied

by downflow by construction swhen the threshold is set to

the median pixel intensity in the original image.d Wave num-

ber distributions obtained from Fourier analysis of Xh and Xc

show no discernible differences.

These measurements of topology are robust to variations

in the choice of threshold. The choice of the median pixel

intensity as the threshold to separate upflows from down-

flows is physically well-motivated but somewhat arbitrary. In

practice, any reasonable choice yields similar results. For

example, for Xh and Xc in Fig. 2, choosing the mean pixel

intensity swhich is larger than the median intensity by ap-

proximately 5% of full scaled as the threshold yields nearly

identical Betti numbers: b0h=22, b0c=53, b1h=23, and b1c

=3.

Time series of the Betti numbers exhibit fluctuations

about well-defined time-average values sFig. 3d. The fluctua-

tions are primarily a global signature of the complex spa-

tiotemporal behavior of spiral defect chaos. Mean flow in-

duced by curvature in the roll pattern leads to regions of

local compression or dilatation throughout the pattern. Com-

pression often leads to merging of neighboring rolls, while

the dilatation results in the formation of a new rolls in the

pattern; these processes are closely related to secondary in-

stability mechanisms for ideal straight rolls.
1,8

These local

events drive further changes in pattern curvature, thereby

leading to a continually evolving pattern with fluctuating to-

pology. The Betti numbers are a global measure of the topo-

logical changes, and therefore, are dependent on the local

processes, for which theories of defect dynamics have been

proposed.
14
How Betti numbers are related to defect dynam-

ics remains an open question; for our purposes, we focus on

the time-average values of the Betti numbers

sb̄0h , b̄1h , b̄0c , b̄1cd, which we find to be stationary for

fixed e.

The measurements of b̄ are robust with respect to flow

visualization conditions. It is well known that shadowgraphy

can introduce significant nonlinearities and image artifacts

se.g., causticsd; the strength of these effects depend on the

effective optical distance z1 of the shadowgraph system.
10

FIG. 2. sColord Computation of the homology for the experimental data in

Fig. 1sbd yields a sequence of Betti numbers b, which can be readily inter-
preted visually. The number of distinct components is indicated by the ze-

roth Betti number for cold downflows sad b0c=49 and for hot upflows sbd

b0h=24. sDifferent colors are used in sad and sbd to distinguish a given

component from its nearest neighbors.d The number of holes is given by the

first Betti number for cold downflows scd b1c=2 and for hot upflows sdd

b1h=20. sEach hole is colored red in scd and sdd.d

FIG. 3. Time series of sad the zeroth

Betti numbers b0h sopen circlesd and

b0c sfilled circlesd, and sbd the first

Betti numbers b1h sopen diamondsd

and b1c sfilled diamondsd are obtained

from laboratory experiments at e=2.5.
Time is scaled by t

v
; the time interval

between samples is t
v
/2.
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We have checked for possible sensitivity to shadowgraphy

visualization by conducting a series of experiments where

the conditions of the convective flow were fixed and image

time series were captured for different values of z1. Figure 4

shows that the mean Betti number changes only slightly as z1
is varied over nearly an order of magnitude. Additional ex-

perimental data snot shownd demonstrate that a change of

sign in z1 fwhich changes hot upflows scold downflowsd

from bright sdarkd to dark sbrightdg does not affect the deter-

mination of b̄.
The differences between the mean Betti numbers for hot

upflows b̄0h, b̄1h and for cold downflows b̄0c, b̄1c become

more substantial as e increased above convective onset sFig.

5d. For e,2.0, the mean numbers of components and holes

are roughly equal for both upflows and downflows. More-

over, the number of holes in downflows/upflows is effec-

tively zero for e,0.7, where the patterns consist essentially

of straight rolls. Near the onset of spiral defect chaos sat

approximately e=0.7 in our experiment, the number of holes
for upflows/downflows becomes nonzero. For e.2.0, the

difference in the average component number grows signifi-

cantly as both the number of cold components grows and the

number of hot components shrinks. The behavior in the num-

ber of holes is somewhat different; for e,2.0, the number of

holes increases significantly in the hot upflows but decreases

only weakly for the cold downflows.

FIG. 4. The mean Betti numbers are plotted as a function of the effective

optical distance z1 of the shadowgraph system in laboratory experiments

performed at e>2. For each data point, the median pixel intensity of the raw

shadowgraph images was used as the threshold for the homology analysis.

FIG. 5. The mean zeroth Betti numbers b̄0h sopen circlesd and b̄0c sfilled

circlesd, and first Betti numbers b̄1h sopen diamondsd and b̄1c sfilled dia-

mondsd are shown as a function of e for data from laboratory experiments.

Each data point is obtained by averaging the Betti numbers from analysis of

18 000 images corresponding to an observation time of approximately

1800 t
v
.

FIG. 6. Time series of the zeroth Betti

numbers b0h sopen circlesd and b0c

sfilled circlesd, and the first Betti num-

bers b1h sopen diamondsd and b1c

sfilled diamondsd are obtained from

numerical simulations at e=1.4. The
midplane temperature field from

Boussinesq simulations is used to ob-

tain time series of sad b0h, b0c and sbd

b1h, b1c. The midplane temperature

field from non-Boussinesq simulations

is used to obtain time series of scd b0h,

b0c and sdd b1h, b1c. The vertical ve-

locity component at z=−0.25 from

non-Boussinesq simulations is used to

obtain time series of sed b0h, b0c and

sfd b1h, b1c. sThe midplane is located

at z=0 and the bottom boundary is lo-

cated at z=−0.5.d Time is scaled by t
v
.
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These experimental observations, taken as a whole, sug-

gest the observed asymmetries in the Betti numbers may be

due to the breakdown of the Boussinesq approximation sand

corresponding breaking of the Boussinesq symmetryd. To

check this hypothesis, we conducted two simulations under

identical conditions except one simulation was Boussinesq

sQ=0d and the other simulation was non-Boussinesq sQ

=4.5d. The Betti number time series for the Boussinesq simu-

lation shows little distinction in the Betti numbers fFigs. 6sad

and 6sbdg. By contrast, examination of the same field variable

in non-Boussinesq simulation fFigs. 6scd and 6sddg shows

distinct differences in the Betti numbers that are qualitatively

in agreement with the experimental observations.

Different flow fields extracted from the simulation ex-

hibit similar qualitative behavior in the time-averaged Betti

numbers fFigs. 6scd–6sfdg. We examined both the tempera-

ture field and the vertical velocity components sampled at the

vertical positions z=0 sthe midplane of the convection celld,

z=−0.25 and z= +0.25. sThe top and bottom boundaries are

located at z= +0.5 and z=−0.5, respectively.d The quantita-

tive values for the time-averaged Betti numbers differ

weakly between different projections of the convective flow.

However, every projection exhibits the same qualitative re-

sult; namely, in a given projection of Boussinesq convection,

the time-averaged Betti numbers for hot upflows and cold

downflows are the same, while each projection of non-

Boussinesq exhibits the same Betti number asymmetries.

V. CONCLUSIONS

We conclude that the breakdown of the Boussinesq ap-

proximation can be readily observed in data from convection

experiments and simulations by analyzing the topology using

computational homology. It might be argued the use of ho-

mology constitutes an “excessive use of force” for the two-

dimensional patterns analyzed here since the counting of fea-

tures such as components and holes could be accomplished

by other means. Nevertheless, these upflow/downflow topo-

logical asymmetries, which had remained unnoticed despite

decades of experimental study of convective flows, were un-

covered by a systematic analysis suggested by the homology

formalism. Moreover, the homology analysis outlined here

can be readily extended to higher dimensions where less so-

phisticated approaches will likely fail. For example, three-

dimensional complexes can be formed from the image data

used here by creating “time-blocks” of data with two spatial

dimensions and one time dimension; such data are expected

to contain new topological features that capture dynamical

information.
15

Our results are consistent with well-known symmetries/

asymmetries of convective flows that arise at onset. Physi-

cally, non-Boussinesq effects at onset are commonly associ-

ated with the temperature dependence of the fluid’s physical

properties.
8
In particular, for convection in gases considered

here, the kinematic viscosity typically increases with increas-

ing temperature; this particular temperature dependence

leads to stable flow at onset in the form of “down-hexagons,”

which have cold downflow in the center of each hexagon.

The zeroth Betti numbers of a pattern containing M hexago-

nal convection cells in an ordered array can be easily deter-

mined. In gas convection, the cold downflow at the center of

each hexagon will be isolated for all other cold downflows,

yielding b0c=M, while the hot upflows around the edges of

all hexagons will be connected, yielding b0h=1. This Betti

number asymmetry sb0c.b0hd is consistent with the results

for our non-Boussinesq experiments and simulations far

from onset, where the temperature-dependent variation of

fluid properties is of larger magnitude but has the same

“sign” as the variations near onset. Based on these consider-

ations, we conjecture that a homological analysis of far-

from-onset non-Boussinesq flows in typical liquids se.g., wa-

terd should exhibit the Betti number asymmetry b0h.b0c,

since this asymmetry would be consistent with the typical

appearance of “up-hexagons” at onset of non-Boussinesq

convection in such fluids. sThe physical origin up-hexagons

in liquids can be traced to the typical temperature depen-

dence of the kinematic viscosity, which usually decreases

with increasing temperature.d

Our results suggest that computational homology might

be a useful tool in a wide variety of cases in fluid dynamics.

For example, in the atmospheric sciences, where extensive

use is made of the Boussinesq approximation, homological

analysis may provide new ways to characterize atmospheric

data. The use of homology need not be limited to convection;

this approach may be applied in any fluid flow where quan-

titative characterization of complex data is needed.
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