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SUMMARY

Complex patterns arise in many extended nonlinear nonequilibrium systems

in physics, chemistry and biology. Information extraction from these complex pat-

terns is a challenge and has been a main subject of research for many years. We

study patterns in Rayleigh-Bénard convection (RBC) acquired from our laboratory

experiments to develop new characterization techniques for complex spatio-temporal

patterns. Computational homology, a new topological characterization technique, is

applied to the experimental data to investigate dynamics by quantifying convective

patterns in a unique way. The homology analysis is used to detect symmetry break-

ings between hot and cold flows as a function of thermal driving in experiments,

where other conventional techniques, e.g., curvature and wave-number distribution,

failed to reveal this asymmetry. Furthermore, quantitative information is acquired

from the outputs of homology to identify different spatio-temporal states. We use

this information to obtain a reduced dynamical description of spatio-temporal chaos

to investigate extensivity and physical boundary effects in RBC. The results from

homological analysis are also compared to other dimensionality reduction techniques

such as Karhunen-Loève decomposition and Fourier analysis.
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CHAPTER I

INTRODUCTION

Convective flow plays a key role in numerous technological processes and natural

phenomena, including the growth of semiconductor materials and the dynamics of the

Earth’s atmosphere, ocean, and mantle [25]. Rayleigh [47]-Bénard [4, 5] convection of

a horizontal fluid layer, confined between two thermally conducting plates and heated

from below, is considered a paradigm to investigate the nature of convection, and has

motivated numerous numerical and laboratory studies (see for example Ref. [15, 7]

and references therein).

In Rayleigh-Bénard convection (RBC), a thin horizontal layer of fluid (convection

cell) is confined between two parallel plates, as illustrated in Fig. 1.1, and is heated

from below and cooled from above to achieve a temperature gradient ∆T across

the layer. The temperature profile across the fluid is linear for small values of ∆T ,

provided that the thermal conduction of a still fluid is the only way to transport

heat in the system. As the temperature difference reaches a critical value ∆Tc, the

destabilizing mechanism (buoyancy) overcomes the stabilizing mechanisms (heat and

momentum diffusion), and the onset of convection (fluid motion) occurs. The system

undergoes a transition from a spatially uniform conduction state to a convection state

with spatial variation. The convection pattern of spatial variation is composed of hot

(upflow) and cold (downflow) cylindrical rolls. The pattern evolves into more complex

configurations as ∆T is increased above the onset.

RBC experiments are described by three dimensionless quantities; the aspect ratio

Γ, the Prandtl number σ and the Rayleigh number R. The aspect ratio Γ measures the

geometry of the convection cell and is defined by Γ = r/d, where r is the radius and
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d is the depth of a cylindrical convection cell. There are two important characteristic

vertical diffusion times in convection; the thermal relaxation time tκ = d2/κ and the

viscous relaxation time tν = d2/ν, where κ is the thermal diffusivity and ν is the

kinematic viscosity. The ratio of these times defines the Prandtl number

σ =
ν

κ

which measures the relative importance of the temperature advection and the momen-

tum convection terms in the equations governing the fluid motion (see for instance

Eq. A.9 in Appendix A). At the onset of convection, a warmer parcel of fluid at

Figure 1.1: A schematic illustration of onset in Rayleigh-Bénard convection where
a thin layer of fluid is confined between two parallel plates. Tb = Tt + ∆T and Tt are
the bottom and the top plate temperatures, respectively. The onset of fluid motion,
as illustrated, occurs at sufficiently large temperature difference ∆Tc. The convection
pattern at the onset appears in the form of straight hot and cold rolls as the cell is
viewed from above.

the bottom of the layer rises and exchanges heat conductively with the surrounding

fluid, at the same time, a colder parcel of fluid at the top of the layer sinks and ex-

changes heat with the surrounding fluid (Fig. 1.1). If we consider a parcel of fluid as

a spherical fluid particle of radius a moving with a speed V , then there are two forces,

namely the buoyant force and the viscous drag force, acting on this sphere in opposite

directions. The buoyant force per unit volume is proportional to the acceleration of

gravity g and the density gradient ∆ρ. The buoyant force Fb and the viscous force
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Fv from Stokes’ law are given by

Fb =
4π

3
αgρ∆Ta3, Fv = 6πρνV a

where ν and α are the kinematic viscosity and the volumetric thermal expansion

coefficient, respectively. Therefore, the sphere, at the onset of convection, moves

with a speed V ∝ αg∆Td2ν−1 (assuming the radius a is on the order of d). The

motion of the sphere across the layer is sustainable as long as the time for the sphere

to travel the depth d is smaller than the time (tκ) for a thermal perturbation to travel

the same distance d, that is, V > κ/d. Then, the dimensionless number R,

R =
αgd3∆T

κν
, (1.1)

needs to be larger than a critical constant Rc in order to sustain the convective motion

in the cell. R is called the Rayleigh number named after Lord Rayleigh [47]. The

exact value of the constant Rc (critical Rayleigh number) can be obtained from a

linear stability analysis performed on the equations describing the state of a fluid.

This analysis can be found in Ref. [11]. For a solid and perfectly conducting top and

bottom plates, the value of Rc is equal to 1707.76 at the onset for any fluid. It is

convenient to define a control parameter, a reduced Rayleigh number, by

ǫ =
R − Rc

Rc
, (1.2)

to measure dimensionless distance from the onset [15]. As the system is driven away

from the onset, e.g, by increasing the temperature gradient ∆T between the layers,

the pattern of convective hot and cold flows becomes time dependent and exhibits

complex spatial structure. In particular, as discussed later, for the σ ≈ 1 case and

sufficiently large ǫ, the system exhibits a transition to the state known as spiral defect

chaos (first observed by Morris et al. [43]), where the convection pattern of hot and

cold rolls with a spatio-temporally chaotic behavior is deformed into rotating spirals
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and riddled with dislocations, disclinations, and grain boundaries. (For example see

Fig. 2.4 in Chapter 2.)

This dissertation is organized as follows: Chapter 2 describes both experimen-

tal and characterization techniques used in investigating complex time-dependent

patterns in Rayleigh-Bénard convection of compressed gases with σ ≈ 1. The exper-

imental and the optical setups, needed to visualize cold and hot flows and to acquire

chaotic data under controlled conditions, are described. This chapter also describes

how computational homology is employed to characterize spiral defect chaos patterns.

In Chapter 3 homology and alternative characterization techniques are used to study

the breakdown of the reflection symmetry about the midplane of the layer. Chap-

ter 4 introduces quantitative measures obtained from computational homology and

Karhunen-Loève decomposition to characterize spatio-temporally chaotic dynamics

in experiments.
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CHAPTER II

EXPERIMENTAL AND CHARACTERIZATION

TECHNIQUES

2.1 Apparatus

We measure convective flows experimentally in a horizontal layer of compressed gas

cooled from above and heated from below in a cylindrical convection cell. Compressed

single phase gases CO2 and SF6 are used as convective fluids, bounded by circular

lateral walls. The experiments are performed at pressure ranging from 9 − 32 bar

and at top and bottom temperatures ranging from 10 − 50 ◦C. The top and bottom

temperatures of the convection cell are controlled within ±0.02 ◦C while the pressure

is controlled within ±0.04 bar in experiments. The convective flow patterns are visu-

alized by using the shadowgraph technique that measures the variations in vertically

averaged index of refraction.

The experimental apparatus (a similar apparatus is also described in de Bruyn

et al. [15]) used to study Rayleigh-Bénard convection in compressed gases is shown

in Fig. 2.1. The top and bottom plates need to be highly conductive, relative to

the experimental convective fluid, to prevent any horizontal temperature gradient

at the top and the bottom layer of the convection cell. On the other hand, one

of the plates should be transparent to visible light for shadowgraph measurements.

For these reasons, we use a 2.54 cm thick cylindrical sapphire window as the top

plate and a 0.6 cm thick cylindrical aluminum as the bottom plate in experiments.

The top surface of the aluminum plate is a gold coated mirror of radius 5 cm. The

thermal conductivities of the top and the bottom plate are 46 Wm−1K−1 and 237

Wm−1K−1, respectively; these conductivities are three orders of magnitude larger
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than the thermal conductivities of CO2 and SF6 (for example, see Tab. B.3 and

Tab. B.7 in Appendix B). The convection cell is bounded by a precisely cut and

roughly half of a millimeter thick circular sidewall which is placed and compressed

between the plates. The material from which the sidewall is made should be chosen

carefully. The mismatch in the thermal conductivities of the sidewall and the fluid

causes sidewall forcing in the convective flow as a result of a vertical temperature

gradient near the edge of sidewall. We use two different types of sidewalls, filter paper

and plastic (polyethersulfone), to study convection with strong and weak sidewall

forcing. The thermal conductivities of the paper and of the plastic walls are about

a factor of 4 and 10 times larger than the thermal conductivity of the fluid used

in experiments, respectively. In order to achieve a temperature gradient across the

convection cell, the top layer of the cell is cooled by circulating chilled water over the

top surface of the sapphire window, and the bottom layer of the cell is heated by a thin

electrical resistive heater placed under the bottom plate. The convection cell is placed

inside an aluminum pressure container (Fig. 2.1). Two thermistors for temperature

measurements are implanted in the bottom plate and in the top part of the container

near the sapphire window. There are three feedthroughs on the container; one of

them is for the heater and the thermistor wirings and the other two are for gas inlet

and outlet lines. The bottom plate rests on a steel plate mount with the help of

four leveling screws. One of the screws is hooked up to the center of the mount in

order to compress the sidewall to reach a desired depth. Three screws mounted to a

steel plate via three steel balls are used for cell alignment. The alignment is checked

by an interferometric technique with a He-Ne laser beam. Based on interferometry,

the variation of the depth under pressure is kept less than 5 µm along the cell in

experiments.

The thin heater (MINCO HK5547R47) is linked to a power supply (KEPCO 0-

36V 0-3A) whose output is controlled by sending an analog voltage from a connector
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Figure 2.1: A schematic diagram of the apparatus used in convection experiments.

block (NI BNC-2110), controlled by Labview. The connector block is hooked up to

a data acquisition card (NI PCI-6014) in the computer. Top and bottom thermistors

are connected to a multimeter (HP 34401A) through a time delay relay so that the

resistance values of the thermistors can be measured sequentially by sending digital

signals from the connector. The resistance is read by Labview through a GPIB

interface. A water bath (NESLAB RTE-221) with an analog interface is used to

circulate water. The bath interfaced to Labview is calibrated with respect to the top

thermistor. The bottom and the top plate temperatures are controlled by control loop

feedback mechanisms (PID) implemented in Labview. The temperature difference

between the plates is maintained with high precision (within ±0.02 ◦C). A small

pressure vessel is connected to the container pressure inlet via tubing. The vessel and

the container are pressurized from a gas tank with a regulator. A heater attached
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to the vessel is used to regulate the pressure fluctuations in the container. A valve,

linked to the container pressure outlet through a pressure transducer, can be opened

to reduce the container pressure. Another PID controller is implemented to keep the

pressure variations inside the cell less than 40 mbar.

2.2 Data Visualization and Acquisition

Figure 2.2: A schematic diagram of the shadowgraph technique.

The convective flows in experiments are visualized by the shadowgraph tech-

nique [50, 26, 30, 15]. This technique measures the optical non-uniformities due to the

variations of the second derivative of the index of refraction, averaged over the thick-

ness of the cell, in the lateral directions. For shadowgraph visualization, collimated

light is sent through the fluid in the cell. In the presence of convection, the beam

of light is refracted by the hot and cold cylindrical rolls acting as an array of lenses.

A two dimensional shadowgraph image describing the convective flow pattern, as the

cell is visualized from above, can be captured by imaging the refracted beam of light

( for example see sample images in Fig. 2.3 and Fig. 2.4). The shadowgraph setup

used in our experiments is shown in Fig. 2.2. A parallel beam of light is generated by
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Shadowgraph images captured at increasing ǫ values in an experiment
performed with SF6 in a cylindrical cell of aspect ratio Γ = 30; (a) ǫ = 0.2, (b)
ǫ = 0.4, (c) ǫ = 0.6 (spiral defect chaos sets in), (d) ǫ = 0.8, (e) ǫ = 1.0, and (f)
ǫ = 2.0. Dark and bright regions in images represent hot and cold flows, respectively.
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(a) (b)

(c) (d)

Figure 2.4: Shadowgraph images captured at ǫ = 1.0 demonstrate the spatio-
temporal chaotic behavior. The images are separated by about 10tv, where tv is
the vertical diffusion time and is about 1.8s.

a combination of a pinhole and a fiber optic illuminator positioned at the focal length

of a convex lens. The collimated light is then sent through the sapphire window into

the convection cell. The reflected light from the bottom plate is returned back to the

optics and imaged by a CCD camera (DMK 31BU03 1024x768). Hardware triggering

of the camera as well as the image resolution and the frame rate are controlled by

Matlab. In order to analyze convection under different controlled experimental con-

ditions, the experiments with automated image acquisition are accomplished by the

interface between Labview and Matlab.

The shadowgraph measurements can introduce strong nonlinearities, especially

for ǫ near or above one, which may affect the visualization of cold and hot flows.

The strength of these effects depends on the effective optical distance z1 [15]. (The

distance of the imaging plane from the convection cell.) The distance z1 can be

calculated directly from the optical arrangement in a shadowgraph system [30]. The
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Figure 2.5: The effective optical distance z1 is shown as a function of D (the distance
between the camera lens and the convex lens) for different focal lengths f of the
camera lens. Shadowgraph images are captured for (a) f = 35mm, (b) f = 50mm,
and (c) f = 80mm by fixing D ≈ 50cm.

optical setup can be arranged in a way that a wide range of z1 values, as seen in

Fig. 2.5, can be obtained by only altering the focal length of the camera lens and

the distance between the camera lens and the convex lens. For positive (negative)

values of z1, hot and cold flows appear as dark (bright) and bright (dark) regions,

respectively, in a shadowgraph image.

For onset measurements, the temperature difference ∆T between the plates, below

the onset of convection, is increased very slowly at a constant pressure and a constant

mean temperature. At each value of ∆T , a time series of images are captured by the

camera. The time averaged Fourier power of the images is used to detect any spatial
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structure formed within the cell. The critical temperature difference ∆Tc is recorded

as soon as the convection is detected by the Fourier signal. The depth of the cell d

is calculated from Eq. 1.1 for critical Rayleigh number Rc with the fluid properties

(see Appendix B) evaluated at the mean temperature of the cell. The accuracy of

the depth measurement (with a mean deviation of less than .1%) is checked with the

onset measurements performed at different mean temperatures at the same pressure

value.

For different values of the reduced Rayleigh number ǫ (Eq. 1.2), we analyze the

convection patterns above onset by recording long time series of shadowgraph images

with a spatial resolution of 692×692 pixels at variable frame rates, ranging from .1 to

10 fps. As ǫ is increased by increasing ∆T , the pattern becomes unstable and evolves

into more complex and time-dependent flow patterns, as demonstrated by the set of

shadowgraph images in Fig. 2.3 and Fig. 2.4. For small ǫ, the convective pattern is

composed of curved rolls due to several focus singularities and defects near sidewalls.

For larger ǫ some moving defects are observed in the interior regions of the cell along

with curved rolls. At a sufficiently large ǫ (ǫ = 0.6), the state of spiral defect chaos is

observed.

2.3 Computational Homology

Recent technical advances now make it possible to measure the dynamical behavior

of physical systems with high resolution in both space and time. For example, in fluid

dynamics, turbulent data are often represented by pixels of a raw image (two or three

dimensional) in experiments and by temperature or velocity fields computed at grid

points in simulations. The data sets produced by experiments and simulations can be

enormous; as a result, characterizing such data sets becomes a significant challenge;

therefore, fast and efficient characterization tools are needed.

We investigate characteristics of spatio-temporally chaotic flow patterns in RBC
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by performing experiments over a wide range of ǫ values, and by capturing long

sequences of shadowgraph images at given values of ǫ. Our data sets often contain

hundreds of thousands of images, which takes up a couple of terabytes of disk space.

In this section, we introduce a newly devoloped topological characterization tool

called computational homology, which we will use later in the dissertation to analyze

efficiently our large experimental data sets. Furthermore, later in this section, we

briefly describe some widely used pattern characterization techniques, which we will

also use to study convection patterns in our data sets.

Homology, a branch of algebraic topology, is a metric-independent characterization

method to measure global geometric properties of complex structures (patterns) in

a topological space [36]. In order to attain a computable quantitative measure for

the complexity of a pattern, algebraic objects are assigned to the topological space

extracted from the pattern. In homology theory, specifically, a sequence of Abelian

groups Hk(X), k = 0, 1, 2, . . . , N − 1 is systematically assigned to a topological space

X of N dimensions. For topological spaces with dimension N ≤ 3, these homology

groups are given by Hk(X) = Zβk(X), where the non-negative integers βk(X), the

output of the homolology analysis, are known as Betti numbers. Each βk(X) describes

a unique topological property of X (for more details see Ref. [36]). A given topological

space X of a three dimensional pattern (N = 3) is characterized by three distinct

Betti numbers. More precisely, the zeroth Betti number β0 counts the number of

connected (distinct) components, the first Betti number β1 defines the number of

tunnels, and the second Betti number β2 indicates the number of cavities formed

within X.

As an example of distinguishing structures by homology, we here consider three

simple three dimensional structures; a hollow sphere, a hollow cylinder with open

ends and a torus (Fig. 2.6). The surface of each structure defines the topological

space X. Homology analysis simply yields β0 = 1, β1 = 0, β2 = 1 for the sphere,

13



(a) (b) (c)

Figure 2.6: Homology yields (a) β0 = 1, β1 = 1, β2 = 0 for open ended cylinder,
(b) β0 = 1, β1 = 0, β2 = 1 for the hollow sphere and (c) β0 = 1, β1 = 2, β2 = 1 for
the torus. The surface of each shape defines the topological space of interest.

β0 = 1, β1 = 1, β2 = 0 for the cylinder and β0 = 1, β1 = 2, β2 = 1 for the torus.

Topological space X of interest for a physical system can be identified by per-

forming thresholding, one of the most common methods of image segmentation, on

individual images in data sets. Individual pixels in an image compose X if their value

is greater than some threshold value; other pixels smaller than the threshold value is

considered background if there is only one X of interest. For example, visualization

of the electrical activity on a cardiac tissue requires a voltage value, below which

no region belongs to X. However, in microscopy where different types of cells can

be captured in a single image at a time, a multiple level thresholding is required to

identify different X for each type of cell imaged between different pixel ranges. A

shadowgraph greyscale image from convection, on the other hand, defines two distinct

X of interest: for cold flows Xc and hot flows Xh formed by a two-level thresholding.

Specifically, any pixel value lower (higher) than a threshold value is set to belong to

hot (cold) topological space Xh (Xc). The natural choice for threshold is the median

value of intensity for all pixels in a shadowgraph image, thereby representing the cold

and hot flows by the same number of pixels (the same amount of area). Similiarly,

in an image of temperature or velocity fields extracted from RBC simulations, the

threshold is the median temperature or velocity of the field.
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For the convection studies, the shadowgraph images are preprocessed for the ho-

mology analysis by first subtracting a background image taken below the onset from

images and then by normalizing each image by the background to reduce nonunifor-

mities due to the illumination. Then, a two-dimensional Fourier filter is applied to

the images to remove high wave number components due to camera spatial noise (see

Section 2.5). Then, two distinct binary images (for instance see Fig. 2.7(b)-(c)) that

represent the regions of hot and cold flows are obtained from an image (Fig. 2.7(a))

by thresholding at the median value of intensity. The resulting binary images are

then used to compute the Betti numbers as described below.

The direct computations of the homology groups of topological spaces, especially

for two or three dimensional complex patterns in large data sets, are very time-

consuming. (it requires an investigation on 3N − 1 connected neighborhood points.)

We use a package of computer programs named CHomP [36] developed to perform

computations of homology in arbitrary dimensions. Command line program CHomP

is freely available for download via the Web [12]. The program accepts input files

containing the integer coordinates of the non-zero pixels in cold and hot binary im-

ages (Fig. 2.7(b)-(c)), which describes the topological spaces Xc and Xh. In return,

computations produce two Betti numbers for each space: β0c, β1c for the cold flows

(see Fig. 2.7(d)-(f)) and β0h, β1h for the hot flows (see Fig. 2.7(e)-(g))(β2c = β2h = 0

in two dimension) . In particular, β0c (β0h) counts the number of distinct connected

cold (hot) components, β1c (β1h) counts the number of cold (hot) holes formed within

Xc (Xh). The set of nonnegative intergers {β0c, β0h, β1c, β1h} provides a reduced topo-

logical description of the pattern (Fig. 2.7).

The measurements of Betti numbers are robust with respect to the choice of

threshold and the shadowgraph visualization conditions. Choosing the threshold

larger than the median value by 5%, the computations for the pattern shown in

Fig. 2.7 yields nearly identical results: {β0c = 53, β0h = 29, β1c = 0, β1h = 8}. We
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 2.7: (a) A shadowgraph image captured at ǫ = 0.8 in an experiment per-
formed with SF6. Dark and bright regions in the image represent hot and cold flows,
respectively. Two distinct binary images for (b) cold and (c) hot flows are obtained
by thresholding the image at the median intensity value. Binary images defines cold
Xc and hot Xh topological spaces shown by white (non-zero) pixels. Zero pixels are
disregarded in computations. Computational homology yields the number of distinct
components defined by the zeroth betti number for cold flows (d) β0c = 54 and for
hot flows (e) β0h = 29 , and the number of holes for cold flows (f) β1c = 1 and for
hot flows (g) β1h = 9. The distinct components are shown in different colors and the
holes are colored in red.
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Figure 2.8: The mean Betti numbers are shown as a function of the effective optical
distance z1 of the shadowgraph system in the experiment performed at ǫ = 2.0 with
CO2. Each data point corresponds to a time average of Betti numbers from analysis
of 500 images.

checked the sensitivity of the measurements of Betti numbers to shadowgraph visual-

ization by conducting experiments at a fixed ǫ for different values of effective optical

distance z1 [30, 15]. Time averaged Betti numbers are obtained from succesive compu-

tations in a time series of shadowgraph images at each value of z1. As seen in Fig. 2.8,

the mean Betti numbers change slighly as z1 is varied over an order of magnitude in

the experiments.

2.4 Karhunen-Loève Decomposition

KLD is a characterization technique well-known in many disciplines to extract impor-

tant modes from data sets. For this analysis, an ensemble of space-time data u(x, t)

from discrete arrays of intensity u(xi, tj), which represent the pixel value recorded at

position xi at time tj , is first formed. A conventional KLD is given by the integral [16],

∫

C(x, x′)Φ(x′)d3x′ = λΦ(x), (2.1)
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where the kernel is C(x, x′) = < u(x, t) ⊗ u(x′, t) > and built by the two-point

correlation of the elements of u(x, t) averaged over time. Φ(x) is the eigenvector

defined as a KLD mode with associated eigenvalue λ. Solving the eigenvalue prob-

lem in Eq.(2.1) is computationally intense and generally done using a singular value

decomposition (SVD) decomposition, as described below, and hence is of order n3

where n is the number of pixels in both space and time.

For KLD analysis, we construct a S × T space-time data matrix U from discrete

arrays u(xi, tj) [59]. S and T are the total number of observation sites (pixels) xi and

the total number of observation samples (number of images), respectively. First, we

subtract the mean for each position xi averaged over all j samples from that position

xi for all tj . The S × S covariance matrix is then calculated with 〈u(xi, tj)u(xi′ , tj)〉,

where angle brackets refer to time averaging. The diagonal elements of the covariance

matrix are the variances of particular observation sites and the off-diagonal elements

are defined to be the covariances between different sites. The original data can be re-

expressed as a new space time matrix Y by a linear transformation including rotation

and stretching. Therefore, the new covariance matrix for Y can be constructed by

having minimal covariance (redundancy) while the signal measured by the variances

is maximized. The eigenvectors φk(xi) of the matrix UUT are chosen as a new set of

basis vectors for U so that the covariance matrix for Y is diagonal, i.e. Y = ΦTU.

The φk(xi) are orthonormal KLD modes that describe a spatial pattern of intensity

over a measurement time and arranged as columns in the matrix Φ. For S >> T ,

we compute eigenvalue decomposition of the matrix UTU, instead of UUT, with

the corresponding orthonormal eigenvectors vk(tj) and the eigenvalues λk. The ma-

trices UTU and UUT have the same maximum min(S, T ) number of non-negative

eigenvalues. The eigenvectors φk(xi) can also be obtained by the eigenvectors vk(tj);

φk(xi) = 1
σk

u(xi, tj)vk(tj) where σk ≡
√

λk are the singular values, or equivalently

Φ = UVΣ−1 where Σ is a diagonal matrix formed with entries σk. Hence, the SVD
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of U and the new data matrix Y can be written as

U = ΦΣVT, Y = ΣVT (2.2)

where yk(tj) and vk(tj) are arranged as rows in Y and as columns in V, respectively.

The original data can be written in terms of an expansion

u(xi, tj) =

T
∑

k=1

φk(xi)yk(tj) (2.3)

with yk(tj) · yl(tj) = λkδkl, δkl is the Kronecker delta function. Each yk(tj) can be

considered as a weight coefficient that measures the impact of the corresponding KLD

mode on the original data. The first m eigenvectors corresponding to the largest m

eigenvalues define the best m-dimensional approximation (dimensionality reduction)

to the columns (observation sites) of X.

Fig. 2.9 demonstrates y1(tj), y100(tj) and y500(tj) describing the time evolution of

the spatial intensity in experimental data where T = 15000 shadowgraph images are

analyzed at ǫ = 0.375 and ǫ = 0.875. yk(tj) corresponds to the kth largest eigenvalue.

At ǫ = 0.875, the KLD modes are comparable in magnitude and more of them are

needed to represent accurately the spatio-temporally chaotic dynamics, specifically

the dynamics of SDC, in the data. On the other hand, at ǫ = 0.375 , when the nearly

straight rolls and the defects near the sidewall move slowly throughout the pattern,

fewer KL modes are necessary to describe the dynamics.

2.5 Structure Factor

The structure factor S(k) is most often used to extract spatial information about the

patterns [43, 44, 32]. The structure factor St(k) of an shadowgraph image is obtained

by the square of the modulus (the power) of the two dimensional Fourier transform

of the image. The time averaged structure function S(k) is given by an average over

St(k) in a time series of images captured at a fixed ǫ in experiments, i.e,

S(k) =
1

T

t=T
∑

t=1

St(k). (2.4)
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Figure 2.9: yk(tj) associated with λk for ǫ = 0.375 (top) and ǫ = 0.875 (bottom).
y1(tj), y100(tj) y500(tj) corresponding to the largest, the 100th and 500th largest eigen-
values, respectively.
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where T is the number of images on which discrete Fourier transforms are performed.

As seen in Fig. 2.10 where S(k) is shown for two different ǫ values, at ǫ = 0.4, there

is a prevailing range for roll orientation since the pattern consists of nearly straight

rolls with small interior defects ( for example see Fig. 2.3(b)). On the otherhand,

as ǫ is set to a value for which the state of SDC is fully developed, e.g, at ǫ = 0.8

(see Fig. 2.3(d)), the rotating and moving spirals throughout the pattern cover most

of the possible roll orientations in time, resulting in a nearly azimuthally symmetric

S(k) distribution.

By performing an azimuthal average in wave vector k-space on each discrete

Fourier transform of the image, several important statistics used in pattern charac-

terization can be achieved. For the azimuthally and time averaged S(k), the average

wave number 〈k〉 is defined by

〈k〉 =

∫

|k|S(k)d2k
∫

S(k)d2k
=

∫

∞

0
k2S(k)dk

∫

∞

0
kS(k)dk

, (2.5)

from which the skewness S3 = µ3ξ
3 and the excess kurtosis K4 = µ4ξ

4 − 3 as a

measure of the degree of asymmetry and of the relative peakedness of the distribution,

respectively, can be written by means of the the moments µn (nth central moment)

of S(k) [44, 43];

µn =

∫

(|k| − 〈k〉)nS(k)d2k
∫

S(k)d2k
=

∫

∞

0
(k − 〈k〉)nS(k)dk
∫

∞

0
kS(k)dk

, (2.6)

(2.7)

and the correlation length ξ from the variance of the distribution;

ξ−2 = µ
−1/2
2 =

∫

∞

0
(k − 〈k〉)2kS(k)dk
∫

∞

0
kS(k)dk

. (2.8)

For the statistics obtained in the power spectrum, one must take into account the

effects due to the nonuniformities in illumination, the noise due to camera and the

shadowgraph nonlinearities, or possible high wave-number components lying on each

roll. Since all of these could introduce higher harmonics in the power distribution, we
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Figure 2.10: Time averaged structure function S(k), acquired from T = 100 images,
is shown for (a) ǫ = 0.4 and (b) ǫ = 0.8. Wave number components are given in units
of 1/d, where d is the depth of the convection cell.
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Figure 2.11: Examples of Fourier filters used to preprocess shadowgraph images:
(a) a Gaussian filter G(k) centered at k ≡ |k| = 0 with a variance σ = 6/d where d is
the depth of the convection cell, (b) a Hann Filter H(k) produced by a combination
of H1(k) in Eq. 2.5 for k1 = 0.1/d, k2 = 1/d and H2(k) in Eq. 2.5 for k1 = 4.5/d, k2 =
12/d.
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filter images in Fourier space by using several high and low pass filters before starting

any analysis on the patterns. Two types of smooth filters we found very suitable and

effective on shadowgraph images are shown in Fig. 2.11; a lowpass Gaussian filter

centered at k = 0 and given by

G(k) = e
−k

2

2σ (2.9)

with a standard deviation σ and a filter H(k) = H1(k)H2(k) from the combination

of a lowpass Hann filter

H1(k) =























1
2
(1 + cos(π k−k2

k1−k2

)), k2 > k > k1

1, k > k2

0, k < k1

and a highpass Hann filter

H2(k) =























1
2
(1 + cos(π k−k1

k2−k1

)), k2 > k > k1

0, k > k2

1, k < k1

where k1 and k2 determines the position of H(k) in the spectrum as demonstrated in

Fig. 2.11.

2.6 Curvature and Obliqueness

In this section, we briefly describe two commonly used measures, curvature and

obliqueness, obtained from textured convective flow patterns. The details of these

texture analyses can be found in Ref. [28] and Ref. [32].

We extract the texture of a cold (hot) flow pattern from a skeleton-line (contour)

representation corresponding to maximum (minimum) intensity regions in a shadow-

graph image. We first detect the points of line defects (disclination and grain points),

where the orientation is singular, and remove them from roll representations. After

distinct roll pieces and the start and end points along each piece are identified, the
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contours are smoothed by using a moving average filter and a high order polynomial

fitting depending on the length of each contour (see Fig. 2.12(a)-(b)). Along each

contour, we calculate the spatially varying roll curvature C = |∇ · n| /2 where n is

the unit normal vector parallel to the local wave vector (Fig. 2.12(c)-(d)). C averaged

over all roll pieces, or over individual pieces as seen in Fig. 2.12(e)-(f), is calculated.

The roll obliqueness is defined as cos(θ) = |s · n|, where n is the unit normal vector

parallel to the local wave vector and s is the sidewall normal vector. For this analysis,

a narrow annular band next to the sidewall is considered. The normal vectors in the

band are acquired from the texture analysis while the vectors on the sidewall are

obtained on a circle defining the lateral boundary (see Fig. 2.13). The average angle

θ is measured via dot product of the normal vectors n and s.
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Figure 2.12: Skeleton-line representations extracted from the pattern in Fig. 2.7(a)
are shown for (a) cold and (b) hot flows. The points, where the unit normal vector
n is undefined, are removed from the representations. The distinct roll pieces are
shown in different colors; the black points indicate the end points of the pieces. The
curvature C is computed along the points on (c) cold and (d) hot roll pieces. In (e)
and (f), the roll pieces in (a) and (b) are greyscale coded based on the average roll
curvature on each piece.
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Figure 2.13: The unit sidewall (s) and roll (n) normal vectors, in a narrow band next
to the sidewall, are shown for cold flow representation in Fig. 2.7(a). A square region
is magnified for better visualization of the vectors. The closest pairs of n (shown in
blue) and s (shown in red) vectors are identified. (Their locations are shown with
open black circles.) For more accurate measurement, an additional closest 8 pairs of
vectors are determined. (The pairs are connected with yellow lines.) The averaged
obliqueness is measured via the dot product of the chosen vectors s and n.
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CHAPTER III

DEPARTURES FROM THE OBERBECK-BOUSSINESQ

APPROXIMATION

3.1 Introduction

The exact equations governing the fluid motion in natural convection are difficult to

manage. In order to simplify the equations by reducing the nonlinearity, the Ober-

beck [45] and Boussinesq [8] (OB) approximation approximation is frequently used

in most theoretical and numerical studies of thermal convection, including RBC (see

Appendix A). Physically, the OB approximation ignores the temperature-dependence

of all fluid properties, except for the temperature-induced density variation retained

in the buoyant force that drives the flow. Flows observed in nature or in the labora-

tory never fully commit to this approximation, and non-Oberbeck-Boussinesq (NOB)

effects inevitably arise. Characterizing the strength of NOB effects in observed flows

could lead to the development of improved models; however, heretofore, there has

been no systematic way to quantify NOB effects using experimental data.

In this section of the thesis, we present the use of algebraic topology (computa-

tional homology) to characterize the departures from the OB approximation in RBC

experiments. The homology analysis is performed on complex patterns in spatio-

temporally chaotic data acquired from experiments where NOB effects are systemat-

ically varied. It is well-known that solutions to the OB equations exhibit reflection

symmetry about the midplane of the layer. Characterization based on homology not

only reveals the breakdown of reflection symmetry but also quantifies the strength

of the asymmetries. We also show that conventional techniques, most often used to

analyze the patterns in RBC, fail to uncover such asymmetries.
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When the fluid’s physical properties change little between the top and the bottom

of the layer, the OB approximation describes the convective flow well; however, when

the properties vary significantly over the layer depth, NOB effects should be taken into

account. The departures from the OB approximation are characterized quantitatively

by the non dimensional parameter Q introduced by Busse [9],

Q =
4

∑

i=0

γiPi (3.1)

with

γ0 = −ρb − ρt

ρm

, γ1 =
αbρb − αtρt

2αmρm

, γ2 =
νb − νt

νm

,

γ3 =
λb − λt

λm
, γ4 =

cpb − cpt

cpm

, (3.2)

where ρ and cp are density and specific heat at constant pressure, respectively, and

λ = κρcp is the thermal conductivity. (The subscripts b, t, m indicate fluid proper-

ties evaluated at bottom, top and mean temperature of the cell, respectively.) The

coefficients Pi are linear functions of σ−1 and first given by Busse [9] in the limit

σ → ∞. Bodenschatz et al. [7] reported recalculated and corrected values of Pi and

these coefficients were confirmed in a recent work by Ahlers et al. [1]. Typically, gases

and liquids have positive and negative values of Q, respectively.

3.2 Experiments

We perform experimental runs in the spiral defect chaos (SDC) regime under different

experimental conditions in order to study the departure from the OB approximation.

Key parameter values for these conditions are shown in Tab. 3.1. We use gaseous SF6

in three experiments (labeled as E-I, E-III and E-IV) with a plastic lateral boundary

and gaseous CO2 in one experiment (E-II) with a paper boundary. The aspect ratio

Γ is held nearly constant for all experiments. The onset Busse parameter Qc is calcu-

lated from Eq. 3.1 with the coefficients γc
i evaluated at the onset of convection (ǫ = 0).

The fluid properties necessary to calculate the coefficients γi in Eq. 3.2 for the range
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Table 3.1: NOB effects with differing strengths are studied systematically by per-
forming experiments under different conditions, E-I, E-II, E-III, and E-IV. As shown
in the Table, each condition is characterized by a choice of fluid and lateral boundary
along with key parameter values including the cell depth d, the aspect ratio Γ, the
pressure P , the critical temperature difference across the cell ∆Tc, the vertical diffu-
sion time tv = d2/κ, the Prandtl number σ, and the coefficients γc

i used to calculate
the Busse parameter Qc at onset.

EXPERIMENT E-I E-II E-III E-IV
Fluid SF6 CO2 SF6 SF6

Boundary Plastic Paper Plastic Plastic
d(µm) 590 649 595 588

Γ 31.6 30.8 31.4 31.8
P(bar) 9.81 30.88 12.90 17.22

∆Tc(
◦C) 12.37 5.49 5.01 1.70

tv(s) 1.2 1.8 1.8 2.7
σ 0.84 0.99 0.88 0.95
γc

0 0.0605 0.0364 0.0294 0.0137
γc

1 -0.0830 -0.0567 -0.0447 -0.0243
γc

2 0.0975 0.0423 0.0440 0.0179
γc

3 0.0625 0.0141 0.0213 0.0045
γc

4 0.0106 -0.0360 -0.0032 -0.0107
Qc 1.57 0.97 0.75 0.38
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of experimental parameters are derived in Appendix B. The experimental conditions

E-I and E-IV represent, respectively, the largest and the smallest departures from OB

convection at onset.

The NOB effects near onset can affect the critical Rayleigh number Rc if they

are strong enough. In a recent study by Ahlers et al. [1], the NOB corrections to

Rc = 1707.8, i.e, δRc = RNOB
c − Rc, are computed numerically. The corrections are

small in our experiments. For example, at onset δRc = 1.7 in E-I and δRc ≈ 0 in

E-IV (for calculations see Eq. 6.9 and Tab. 6 in [1]). We perform experiments at

different ranges of ǫ by increasing the temperature difference ∆T at a constant mean

temperature T̄ (measured at onset) between top and bottom plates. The correction

to Rc used to estimate ǫ at larger ∆T is small even for the case where NOB effects

are largest at onset, e.g, for ǫ = 0.8 in E-I, the correction to Rc is 0.3%.

Away from the onset (ǫ > 0), the NOB effects become stronger. The ǫ dependence

of NOB effects, especially in numerical simulations, is usually characterized by the

coefficients [41, 39]

γi
∼= γc

i (1 + ǫ), (3.3)

which is obtained by keeping only the leading order temperature dependence in a

Taylor expansion of all fluid properties. In experiments with real gases, Eq. 3.3 holds

for order one values of ǫ. For instance, at ǫ = 0.8, the values of γi evaluated from

real gas properties, and the values of γi obtained via Eq. 3.3 agree with one another

by a mean deviation of 0.8% and 0.3% for experiments E-I and E-II, respectively. σ

evaluated at the top and the bottom temperature differs only slightly from σ evaluated

at T̄ ; this variation of σ over increasing ǫ can be estimated from (1/σ)(dσ/dǫ), which

is equal to 0.015, 0.040, 0.010 and 0.009 for E-I, E-II, E-III and E-IV, respectively,

for ǫ ≤ 3.0.

The temperature difference ∆T is increased in each experiment from onset at

a constant T̄ to reach ǫ values, for which SDC is fully developed. Shadowgraph
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Table 3.2: Key conditions are shown for experimental runs R-I, R-II, R-III, R-IV,
R-V and R-VI to probe NOB effects in SDC. Q is estimated from Eq. 3.1 with the
fluid properties (see Appendix) evaluated at ǫ values. The number of images N is
acquired in experiments in observation times tobs in units of the horizontal diffusion
time th (th = Γ2tv).

RUN EXPERIMENT Reduced Rayleigh Number Busse Parameter T̄ (◦C) tobs(th) N
R-I E-I ǫ = 0.8 Q = 2.80 29.92 53 5000
R-II E-II ǫ = 0.8 Q = 1.75 20.55 50 15000
R-III E-III ǫ = 0.8 Q = 1.35 27.51 208 5000
R-IV E-IV ǫ = 0.8 Q = 0.65 25.85 130 5000
R-V E-III 1.0 ≤ ǫ ≤ 2.7 1.50 ≤ Q ≤ 2.79 27.51 10 5000
R-VI E-IV 1.0 ≤ ǫ ≤ 3.0 0.73 ≤ Q ≤ 1.44 25.85 10 5000

image time series of spatio-temporally chaotic flow are acquired at a fixed frame

rate for long observation time intervals, i.e., the intervals are large multiples of the

horizontal diffusion time th (th = Γ2tv where tv is the vertical diffusion time). Four

different runs, indicated by R-I, R-II, R-III, and R-IV, are performed at ǫ = 0.8

as summarized in Tab. 3.2. Sample images of patterns from these runs are shown

in Fig. 3.1. Moreover, experimental runs R-V and R-VI are performed to probe

the departure from the OB convection at higher Rayleigh numbers (ǫ > 1). In

all experimental runs, the shadowgraph images are preprocessed for the analysis by

first subtracting a background image taken below the onset from images and then

by normalizing each image by the background to reduce nonuniformities due to the

illumination.

3.3 Homology Analysis

We first focus on the time-averaged values of the Betti numbers {〈β0c〉, 〈β0h〉, 〈β1c〉, 〈β1h〉}

calculated from the time series of binary images in experimental runs at ǫ = 0.8

(Fig. 3.2). The distinction between cold and hot flows based on the mean Betti num-

bers become more substantial as Q increases as seen in Fig. 3.3. The nearly equal

number of components and holes point out the strong symmetry between cold and
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(a) (b)

(c) (d)

Figure 3.1: Shadowgraph patterns at fixed ǫ = 0.8 and different Q illustrate that
variations in NOB effects are indistinguishable by eye. The images are shown for
experimental runs (a) R-I, (b) R-II, (c) R-III, and (d) R-IV (Tab. 3.2). Dark and
bright regions in images represent hot and cold flows, respectively. Homology compu-
tations yield the following set of Betti numbers for these patterns {β0c, β0h, β1c, β1h};
(a) {54, 29, 1, 9}, (b) {42, 28, 3, 8}, (c) {43, 34, 0, 4}, (d) {43, 44, 4, 4} (for details see
Section 2.3).
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Figure 3.2: Time series of the zeroth Betti numbers are shown for (a) R-IV (b) R-I.
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Figure 3.3: Topological asymmetries increase with the Busse parameter Q at con-
stant ǫ. (a) The mean zeroth Betti numbers 〈β0c〉 (filled circles) and 〈β0h〉 (open
circles); (b) the mean first Betti numbers 〈β1c〉 (filled diamonds) and 〈β1h〉 (open
diamonds) are calculated from the time series of Betti numbers for the experimental
runs (Tab. 3.2) at ǫ = 0.8. In computations, 5000 images are analyzed for the runs
R-I, R-III, and R-IV while 15000 images are used in computations for the run R-II.
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Figure 3.4: Temporal convergence of the mean zeroth Betti number in R-II. 〈β0c〉
(filled triangles) and 〈β0h〉 (open triangles) are shown as a function of observation
time. Each data point corresponds to an average of Betti numbers from analysis of
3000 images. The results for the original data of 15000 images in 50th (Fig. 3.3(a))
are shown with circles.

hot flows for the run R-IV with the weakest NOB effects; nevertheless, the asym-

metry 〈β0c〉 > 〈β0h〉, 〈β1h〉 > 〈β1c〉 are significant for the run R-I, which indicates

a strong breakdown of the OB approximation. The asymmetry is also apparent for

the run R-II, where a different type of convective fluid and of physical boundary are

used. These results suggest that the outputs of homology, especially the zeroth Betti

number β0, can be used to study the degree of departure from the OB convection.

The time averages of the Betti numbers are well-defined for a wide range of ob-

servation time intervals (Fig. 3.4). We demonstrate the temporal convergence of the

mean zeroth Betti number in time by truncating the time series of β0c and β0h with

different sampling rates in R-II. As shown in Fig. 3.4, the results obtained by averag-

ing the Betti numbers of the same size are nearly constant with increasing observation

time.

It is known that shadowgraph visualization can introduce nonlinearities depend-

ing on visualization conditions; these nonlinearities may affect the accuracy of the
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Figure 3.5: Robustness of the measurement of the mean zeroth Betti number with
respect to wave number distribution. The zeroth Betti numbers, 〈β0c〉 and 〈β0h〉,
computed for the images filtered with a two dimensional Gaussian filter of variance η
in units of k. Computations are performed for two data sets, R-I (circles) and R-IV
(squares). Filters with η(k = 2.45) and η(k = 7.83) keep %59 and %95 of the total
power, respectively. k is measured in units of d−1.

measurement. Robustness of the measurements of Betti numbers has been shown

with respect to different effective optical distances resulting in different strength of

the nonlinearities [38] (also see Fig. 2.8 in Section 2.3). These nonlinearities may also

introduce higher harmonics in the wave vector (k) distribution, where the strength

of the harmonics increases with ǫ. Here, we investigate how the measurements of

Betti numbers depend on the k-distribution (see Section 2.5). For this purpose, a

two dimensional Gaussian filter is centered at k = 0 with a variance η(k) and applied

to the Fourier domain of the images to alter the distribution and to reduce the power

in higher harmonics. Fig. 3.5 demonstrates 〈β0c〉 and 〈β0h〉 computed for the images

filtered with different η(k). The weak asymmetry for weakly NOB flows (R-IV) and

the strong asymmetry for strongly NOB flows (R-I) are clearly evident even for the

filter with η(k = 2.45), which retains only 59% of the total power in the original

images. Computations performed with a Gaussian filter centered at the peak of the
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k-distribution also yields similar results.

In order to demonstrate that the asymmetries, when they exist, extend throughout

the cell, we performed computations in subregions of the flow, which are obtained by

sampling the images spatially with a circular window of increasing radius r centered

at the center of the convection cell. The zeroth Betti numbers are computed at each

subregion. The scalings of 〈β0c〉 and 〈β0h〉, computed for many subregions for R-II and

five subregions for R-IV, are displayed with increasing subregion area in Fig. 3.6(a).

The circular regions for r < 5d are too small to extract information since only a few

convection rolls (in binary representation) can fit to such small regions. As soon as

the subregion is large enough, the asymmetry is detected by Betti numbers. It is

convenient to define an order parameter 〈∆β0〉 = 〈β0c − β0h〉 to examine the scaling

of the asymmetry along the cell. As seen in Fig. 3.6(b), the asymmetry, 〈∆β0〉 > 0,

grows with the area; it is noticeable in significantly different areas in R-II. On the

other hand, the symmetry, 〈∆β0〉 ≈ 0, is preserved along the cell in R-IV, i.e, the

asymmetry between cold and hot flows is indistinguishable whether in a small region

(r = 5d) or in a large region that almost covers the entire cell (r = 30d).

The more the system is driven away from the onset, the more NOB the fluid be-

comes as Q grows with the Rayleigh number. We analyze the data sets from R-V

and R-VI described in Tab. 3.2 to investigate the departure from the OB approxima-

tion at higher Rayleigh numbers (epsilon ≥ 1). Fig. 3.7(a) exhibits 〈β0c〉 and 〈β0h〉

computed for 18 increasing ǫ values (with an increment .1 in ǫ) in R-V, and for 5

increasing ǫ values (with an increment .5 in ǫ) in R-VI. The difference between 〈β0c〉

and 〈β0h〉 starts to become more substantial as ǫ increases for each run. The different

runs exhibit a different dependence on ǫ; however, when plotted as a function of Q

(Fig. 3.7(b)), a curve for 〈β0c〉 and another curve for 〈β0h〉 appear to describe the

data from both runs.

Fig. 3.7(b) suggests that the zeroth Betti number data from all experimental
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Figure 3.6: Scaling of the topological symmetry and asymmetry with system size.
The zeroth mean Betti numbers are shown as a function of area of circular subregions
of radius r (r is in units of the cell depth d). In run R-II (Q = 1.75) indicated by
circles, 〈β0c〉 and 〈β0h〉 are obtained by analyzing 15000 images in increasing size of
subregions formed by an increment d in r. In R-IV (Q = 0.65) indicated by squares,
5000 images are used to calculate the zeroth Betti numbers for five subregions of
different sizes (r = 5d, 15d, 20d, 25d, 30d). (b) The order parameter 〈∆β0〉 =
〈β0c − β0h〉 is shown as a function of subregion area for R-II (closed symbols) and
R-IV (open symbols).
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Figure 3.7: Topological asymmetries grow with the Rayleigh number. (a) 〈β0c〉
(filled symbols) and 〈β0h〉 (empty symbols) are shown as a function of ǫ for the run
R-V (circles) and R-VI (squares). Each data point is obtained by averaging the Betti
numbers from analysis of 5000 images corresponding to an observation time of 10th
at each ǫ (b) The zeroth Betti numbers are shown as a function of Q estimated at
the ǫ values in R-V and R-VI.
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Figure 3.8: The zeroth Betti number data for all our experimental runs (Tab. 3.2)
are represented by a single graph of 〈∆β0〉 = 〈β0c−β0h〉 plotted solely as a function of
the NOB parameter Q. Data are shown for experimental runs R-I (open diamond),
R-II (open triangle), R-III (open square), R-IV (open circle), R-V (closed circles) and
R-VI (closed squares).
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runs may be represented by a plot of the order parameter 〈∆β0〉 as a function of Q

(Fig. 3.8). The collapse of the data on a single curve suggests the strength of the

topological asymmetry is solely dependent on NOB effects as characterized by Q.

For a range of Q, 〈∆β0〉 monotonically increases with Q. However, for Q sufficiently

large (here, Q > 2), 〈∆β0〉 is is nearly constant at large Q, specifically, we find

〈β0c〉 ≈ 2〈β0h〉 in R-V and R-I for Q > 2. This behavior at large Q could be aspect-

ratio-dependent; for larger Γ the range of 〈∆β0〉 may increase. Further experimental

studies performed with convection cell with different Γ are needed to provide a better

understanding of this behavior.

3.4 Other Analysis Methods

We also apply alternative characterization techniques to analyze the same convection

pattern data. Although these techniques provide a variety of information about the

global features of the patterns, as we demonstrate next, they fail to identify the

asymmetries that arise between cold and hot flows, even under the strong NOB effects.

The structure factor S(k) (see Section 2.5) is most often used to extract spatial

information about the patterns [43, 44, 32]. We perform an azimuthal average in wave

vector (k) space on each discrete Fourier transform of the image. The azimuthally

and time averaged S(k) is obtained from the time series of images. The average

wave number 〈k〉 (Eq. 2.5) and the correlation length ξ (Eq. 2.8) are calculated from

the distribution of S(k). S(k) computed for the data sets at ǫ = 0.8 is shown in

Fig. 3.9(a). Fig. 3.9(b) presents 〈k〉 as a function of Q, where the vertical extent

is given by ξ−1. The data produce nearly identical wave number distributions as

Q is varied. In addition, the correlation area (∝ ξ2) remains a constant percentage

(nearly 1.5%) of the total cell area for all cases. We note that S(k) does not provide

quantitative characterization between cold and hot flows since it produces identical

results for complementary images as dark (bright) pixels are transformed to bright
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Figure 3.9: The analysis based on two-dimensional discrete Fourier transform pro-
duce nearly identical results for the patterns, on which NOB effects are varied. (a)
The azimuthally and time-averaged structure factor S(k) corresponding to the runs
at ǫ = 0.8. (b) the mean wave number 〈k〉 as a function of Q, the vertical bars extend
by ±ξ−1.
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Figure 3.10: Measures calculated from the texture of the patterns for the runs at
ǫ = 0.8 show no distinction between cold and hot flow patterns as a function of Q.
The number of images used at each point is given in Tab. 3.2. The subscripts c and
h indicates the obtained quantities for cold and hot flows, respectively. (a) The time
averaged radius of curvatures 〈R〉 calculated for full system size and for a circular
region of radius r = 20d inside the cell (b) the time averaged angle of obliqueness
〈θ〉 (c) the time averaged roll length 〈L〉 shown for full system size and for a circular
region of radius r = 20d.
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(dark) pixels.

Several important features can also be extracted from the textures of the patterns.

We calculate the average spatially varying roll curvature C = |∇ · n| /2 and the av-

erage roll obliqueness cos(θ) = |s · n|, where n is the unit normal vector parallel to

the local wave vector and s is the sidewall normal vector (see Section 2.6 for details).

C is a measure of how much a roll bends per unit length. SDC relative to the states

at lower ǫ is composed of highly curved rolls [33]. The rolls terminate perpendicular

into the walls (θ = 90◦) in a cell with a perfectly insulating sidewall. However, the

sidewall forcing produced by a horizontal temperature gradient near the conducting

wall exists in experiments and pushes the rolls to be parallel to the wall [31, 57]. We

calculate the time averaged radius of curvature 〈R〉 (≡ 1/〈C〉), and the time averaged

〈θ〉 as a measure of roll obliqueness, for the image data sets at ǫ = 0.8. In Fig. 3.10(a)

the values of 〈R〉, obtained separately for cold (〈Rc〉) and hot (〈Rh〉) flow patterns,

are shown as a function of Q. The curvatures of the rolls, calculated for the full

circular region of the cell or a smaller circular region (r = 20d), stay quite close to

each other even Q is increased by a factor of 4. Most importantly, no distinction

between cold and hot flow patterns (〈Rc〉 ≈ 〈Rh〉) is observed based on the curvature

measure. This is also what is found similarly on the behavior of 〈θ〉 with increasing Q

as presented in Fig. 3.10(b). On the other hand, as a result of the lower conducting

sidewall (paper) in R-II, both cold and hot rolls hit the sidewall with an acute angle

that is lower for the runs performed with the higher conducting wall (plastic). We

also calculated the time averaged roll length 〈L〉 from the textures of the cold and

hot patterns. The value 〈L〉 estimated for each data set is close to each other while

〈Lc〉 ≈ 〈Lh〉 at different Q (Fig. 3.10(c)).
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3.5 Numerical Simulations

In this section, we analyze the simulation data obtained by a direct numerical sim-

ulations of the Oberbeck-Boussinesq equations. The simulations were performed by

Santiago Madruga at Universidad Politecnica de Madrid. Details of these simulations

can be found extensively in Ref. [38, 41, 39]. The simulations were conducted under

OB (Q = 0) and NOB (Q = 4.5) conditions. Both the temperature and the vertical

velocity fields at z = 0, z = −0.25 and z = 0.25 are extracted from the simulations. (

z = 0, z = 0.5 and z = −0.5 correspond to the location of midplane, the top and the

bottom boundaries of the cell, respectively.) These fields are represented by 128×128

images. Sample images are shown for the midplane temperature and velocity field

in Fig. 3.11. The homology analysis is performed on 400 images, corresponding to a

200tv observation time, at each field. The median value of the field (temperature or

vertical velocity) for each image is used as a threshold value to compute Betti num-

bers for the flow field. The time-averaged mean Betti numbers are extracted from

time series of images at each field, sampled at z = 0 and z = ±0.25, for both OB and

NOB conditions. As shown in Fig. 3.12, the mean zeroth and the mean first Betti

numbers obtained from OB simulations show little distinction in both temperature

and velocity fields. However, the analysis of the same fields in NOB simulations ex-

hibits distinct differences in the mean Betti numbers, i.e, 〈β0c〉 > 〈β0h〉, 〈β1h〉 > 〈β1c〉.

Our experimental results are qualitatively in agreement with the simulations where

homology has revealed the asymmetries that arise in both temperature and velocity

fields in the presence of NOB effects (Q = 4.5).

3.6 Discussion

Our results are consistent with well-known symmetries/asymmetries of convective

flows that arise at onset [15]. Under Boussinesq conditions, gases exhibit straight-roll

convection via a supercritical bifurcation. Homology simply yields β0c = β0h = N and
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(a) (b)

(c) (d)

Figure 3.11: Simulations in a square domain are shown for the midplane temper-
ature fields (a,b) and the midplane vertical velocity fields (c,d) at ǫ = 1.4. In NOB
simulations (a-c), all the γc

i are retained, while in OB simulations (b-d), all the γc
i are

set to 0. The coefficients are γc
0 = 0.1714, γc

1 = −0.2118, γc
2 = 0.2836, γc

3 = 0.1905,
γc

4 = 0.0624 corresponding to Q = 4.2. The side length is equal to 16 times the
pattern wavelength at onset. Computations, where the threshold is chosen as the me-
dian value of temperature or velocity field at each image, yield following set of betti
numbers {β0c, β0h, β1c, β1h}; (a) {44, 12, 0, 22}, (b) {22, 22, 6, 6}, (c) {42, 14, 2, 19}, (d)
{20, 21, 3, 3}
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Figure 3.12: The temperature fields (a-b) and the vertical velocity fields (c-d) at
z = 0 and z = ±0.25 from OB and NOB simulations are used to obtain the mean
zeroth Betti numbers < β0 > (a-c) and the mean first Betti numbers < β1 > (b-d) for
cold and hot flows. Each data point is obtained by averaging the Betti numbers from
analysis of 400 images corresponding to an observation time of 200tv. The midplane,
the top and the bottom boundaries of the cell is located at z = 0, z = 0.5 and
z = −0.5, respectively.

47



(a) (b)

Figure 3.13: Contrary to convection in gases, patterns in liquids with negative Q
have the asymmetry β0h > β0c, β1c > β1h. For instance, temperature fields from a
NOB simulation in a circular cell of water are shown at (a) ǫ = 0.6 and (b) ǫ = 1.0,
after [40]. All coefficients, γc

0 = 0.0036, γc
1 = 0.2122, γc

2 = −0.2725, γc
3 = 0.0352, and

γc
4 = −0.0013 corresponding to Qc = −1.84, are retained. The diameter of the cell is

equal to 16 times the pattern wavelength at onset. Computations yield the following
set of Betti numbers {β0c, β0h, β1c, β1h}: (a) {11, 37, 6, 0}, (b) {5, 48, 10, 1}.

β1h = β1c = 0 for N straight rolls in a pattern (without sidewall forcing at onset). In

the non-Oberbeck-Boussinesq case, the flow exhibits a subcritical bifurcation at onset

where gases with positive Q (as in our experiments) display g-hexagons with (cold)

downflow in the center (see sample patterns in Ref. [6]). Homology returns β0c = M >

β0h = 1 and β1h = M > β1c = 1 for a pattern containing M g-hexagonal cells; in other

words, the qualitative result of NOB effects leading to β0c > β0h, β1h > β1c patterns

at onset is consistent with the interpretation that NOB effects are responsible for our

observations of β0c > β0h well above onset. A further test of this consistency can

be found by examining the case of NOB convection in liquids, where Q is typically

negative and l-hexagons with hot upflow in the center is observed at onset (see a

sample pattern in Ref. [13]). To examine the behavior of Betti numbers in liquids

well above onset, we performed an analysis of the homology of temperature field

images from numerical simulations of NOB convection in water reported in Ref. [40]

and reproduced in Fig. 3.13. We find β0h > β0c, β1c > β1h, i.e., for NOB flows

in liquids, the Betti number asymmetry far from onset is consistent with the Betti
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number asymmetry for flows near onset.
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CHAPTER IV

CHARACTERIZATION OF DYNAMICS

4.1 Extensive Chaos in Rayleigh-Bénard convection

4.1.1 Introduction

Characterizing data from experiments on spatially extended non-equilibrium systems

is a challenge [14]. Methods devised to extract information from low-dimensional

systems [56] fail as the number of dynamical degrees of freedom (DOF) increases.

Recently, methods have been developed to determine the number of DOF in numerical

simulations [48, 42, 18, 19, 46]; these methods suggest that the already large number

of DOF grow still larger as the system size increases, i.e, the number of DOF in

spatially extended systems is an extensive quantity. The techniques for measuring

the number of DOF in simulations require very precise control of the initial conditions

and, therefore, cannot be used in most experimental systems. What are needed are

good, experimentally accessible methodologies to characterize the number of DOF

efficiently in large experiment data sets not only to measure how DOF scale with

system size, but also to detect the impact of finite size effects (always present in

experiments) on the behavior of the number of DOF.

In this section of the thesis, we present a novel characterization method based

on a topological dimension DCH, which can readily measured in experiments. We

determine DCH by applying the tools of algebraic topology (homology) [36] to a

spatio-temporally chaotic system. We compare DCH to the KLD dimension DKLD [58]

determined from the same experimental data using Karhunen-Loève decomposition

[16]. Measurement of both dimensions not only shows the system is extensively chaotic

but also provides evidence of the influence of boundaries leading to deviations from
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extensive scaling. Specifically, DCH and DKLD exhibit similar scaling behavior that

characterizes finite size effects in experiments.

The number of dynamical DOF in a chaotic system is defined by the Lyapunov

dimension Dλ captured by the Lyapunov exponents [56]. Some numerical models of

complex time-dependent patterns [24] have demonstrated that a positive Lyapunov

exponent, indicating the existence of spatio-temporal chaos, can be extracted from

homological data. A numerical study by Zoldi and Greenside [58] on a homogeneous

extended chaotic system showed that Dλ and DKLD demonstrate analogous extensiv-

ities. Dλ and DKLD scale linearly at similar rates with either size of the entire system

or size of a sufficiently large subsystem in a fixed system size. Recent direct simu-

lations of RBC by Duggleby and Paul [17] yielded the relationship DKLD ≈ 19.7Dλ

from the variation of both dimensions with a range of system sizes 6 ≤ Γ ≤ 15 in a

cylindrical convection cell. Zoldi et al. [59] investigated the scaling of DKLD with in-

creasing subsystem sizes in RBC obtained by sampling the data with a spatial window

of increasing size in a fixed Γ cell. They showed that SDC is extensively chaotic over

a range of subsystem sizes in experiments although their measurements of DKLD are

not converged in large subsystem sizes. Experiments performed to observe all possible

features of a chaotic system may produce enormous data sets; hence computationally

establishing the convergence of DKLD is often not possible with conventional KLD

algorithms in today’s computational power.

4.1.2 Experiments

We analyze the convection in the state of SDC. Three large sets of spatio-temporally

chaotic data are acquired in different experiments as described in Table 4.1. D-I and

D-II are taken in two different Γ cells where CO2 (at 30 bars) is bounded by a lateral

wall made of filter paper, while D-III is obtained in an experiment performed with
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Table 4.1: SDC data taken in three different experimental cells at ǫ = 0.8 with the
aspect ratio Γ = r/d (radius to depth ratio), the fluid and the sidewall used. Pr is
the Prandtl number and t is the observation time in units of the horizontal diffusion
time th = Γ2tv. The vertical diffusion time tv is order of seconds. N is the number of
images captured for computations.

DATA Γ Fluid Sidewall Pr t/th N/103

D-I 35 CO2 Paper 0.98 451 100
D-II 30 CO2 Paper 0.98 50 15
D-III 30 SF6 Plastic 0.95 130 105

SF6 (at 13 bars) with a plastic (polyethersulfone) sidewall 1. We could not perform

experiments with CO2 and the plastic in long observation times since it absorbs the

gas and swells over time in high pressure [15]. Sample patterns are shown in Fig. 4.1.

4.1.3 Homology Dimension

We use the quartet {β0c, β1c, β0h, β1h} to define the CH state of the convection pattern

at the instant of time when the pattern’s image is recorded. The time evolution of

CH states is characterized by successive computations of Betti numbers from a time

series of images; the number of distinct CH states are counted, thereby, yielding an

estimate of pk, the probability of occurence for a given state. We introduce a positive

integer DCH:

DCH = min

{

k :
k+1
∑

k=1

pk > f

}

(4.1)

which defines the minimum number of CH states k needed to capture some fraction

f ≤ 1 of the total probability (Fig. 4.2). Here, we use DCH to measure the spatio-

temporal disorder of an extensively chaotic experimental system.

1The thermal conductivities of the paper and of the plastic walls are about a factor of 4 and 10

times larger than the thermal conductivity of the fluid used.
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(a) (b)

(c) (d)

Figure 4.1: Shadowgraph patterns of SDC at ǫ = 0.8. Bright and dark regions
represent hot and cold flows respectively. (a)-(b) Two images from D-I separated
by about 10th, (c) from D-II and (d) from D-III. The median value of intensity
in an image is used as a threshold value to form two distinct binary images that
represent topological spaces for hot Xh and cold flows Xc, respectively. Homology,
for instance, yields the following topological states for the images, {β0c, β1c, β0h, β1h}:
(a) {64, 2, 29, 13}, (b) {65, 4, 36, 17}, (c) {42, 3, 28, 8} and (d) {43, 4, 44, 4}.
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Figure 4.2: Probability distribution of CH states defined by {β0c, β1c, β0h, β1h} is
obtained from homology analysis of 100000 shadowgraph images in data set D-I.
(
∑

k pk = 1.) The first largest 1814 probabilities define 70% of the total probability,
i.e, DCH = 1814 for f = 0.7 (Eq. 4.1).

4.1.4 Karhunen-Loève Decomposition Dimension

To analyze shadowgraph data using KLD, an ensemble of space-time data u(x, t)

is first formed from the intensity arrays u(xi, tj), which represent the pixel value

recorded at position xi at time tj . Conventional KLD algorithms given by Eq. 2.1 in

Section 2.4 are computationally intensive on large data sets and generally done using a

singular value decomposition and hence are of order n3 where n is the number of pixels

in both space and time (e.g, n ∼ 1010 space time pixels in D-I). In order to overcome

this problem we implement a modified KLD algorithm proposed by Duggleby and

Paul [17] for numerical data that exploits the azimuthal symmetry for a rotationally

invariant experimental system. A KLD mode, specified by the pair (n, m), is written

as Φm
n (r, θ) = ϕ

m
n (r)einθ with an azimuthal wavenumber n and an eigen number m.

This results in a small eigenvalue problem;

∫ ro

0

Cn(r, r′)ϕm
n (r′)r′dr′ = λm

n ϕ
m
n (r), (4.2)
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Figure 4.3: Eigenvalue spectrum is obtained from Fourier based KLD analysis ap-
plied on 100000 shadowgraph images in data set D-I. (

∑

m λm = 1.) The first largest
806 eigenvalues define 70% of the spectrum, i.e, DKLD = 806 for f = 0.7 (Eq. 4.3).

for each wavenumber n one must analyze the tensor Cn(r, r′) =< ûn(r, t)⊗û
∗

n(r′, t) >

, where ûn(r, t) is the Fourier transform of u(x, t) in the azimuthal direction and ∗

denotes the complex conjugate. In computations the eigenvalues are ordered in de-

scending order and normalized by the sum of all the eigenvalues. The KLD dimension

DKLD [58]

DKLD = min

{

m :
m+1
∑

m=1

λm > f

}

(4.3)

defines the minimum number of KLD modes m required to capture some fraction

f ≤ 1 of the total eigenvalue spectrum (Fig. 4.3).

In order to show the clear advantage of computing DKLD from Fourier based KLD,

we perform two convergence tests. First, we form a series of images by rotating a single

image, given in Fig. 4.1(a), azimuthally by the angles θ = k∆θ with ∆θ = 2π/180,

where k = 1, 2, . . . , 360. Thus, we obtain a set of 360 images from two complete

rotations of the original image. In Fig. 4.4, the cumulative dimension DKLD obtained

from both methods are shown as a function of k. It is evident that Fourier based
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Figure 4.4: The cumulative DKLD (for f = 0.7) obtained from conventional KLD
(dashed line) and fourier based KLD (solid line) is shown as a function of the number
of images k used in computations. The image data is created by rotating a single
shadowgraph image by increments of ∆θ = 2π/180.
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Figure 4.5: The cumulative DKLD (for f = 0.7) acquired from conventional KLD
(open circles) and Fourier based KLD (closed circles) are shown as a function of time.
The red dashed line is the curve fit DKLD = D∞+ae−bt/th (a = −67.14, b = −0.0657)
for conventional KLD. The asymptotic value D∞ = 100.2 for the conventional KLD
is shown by the solid red line.
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KLD takes advantage of the rotational invariance. Second, 5000 images in 25th are

extracted from D-I and sampled spatially with a circular window of radius 12d. We

investigate the convergence of DKLD from both methods in observation time. As seen

Fig. 4.5, DKLD from Fourier based KLD reaches an asymptotic value, to which DKLD

from conventional KLD fail to converge during the same time interval.

4.1.5 Extensive Scalings

CH and KLD provide very different methods for analyzing convection patterns; never-

theless, we find DKLD and DCH increase in a similar manner as new degrees of freedom

are added. We explore extensivities of DCH and DKLD for different subsystems sizes

in D-I, which are obtained by sampling the data spatially with a circular window

of increasing radius r, measured in units of depth d from the cell center. We work

with a fixed fraction f = 0.7 [59] to compute DCH and DKLD from the eigenvalue

spectra and the probability distributions, respectively, for each subsystem. We find

that, over a large range of subsystem sizes, DKLD scales extensively with the area of

the system A ∝ r2 (Fig. 4.6),consistent with the results of KLD analyses in previous

numerical and experimental studies that strongly suggest that the state of SDC is

extensively chaotic [58, 59]. We find that DCH also provides strong evidence for ex-

tensive chaos; DCH also scales extensively with r2 over substantially the same broad

range of subsystem sizes as DKLD (Fig. 4.6).

Computational homology offers a way to measure dimensions that converge more

rapidly than dimensions measured using KLD. Conventional KLD become prohibitively

expensive to compute even for moderately large system sizes; as a result, measure-

ments of DKLD can fail to converge [59]. Fourier-based KLD (used in our analysis)

provides faster and converged estimates of DKLD in large subsystem sizes [17]; it is,

however, only suitable for systems with rotational or translational invariance. CH

has no such limitations and can be performed on sufficiently large systems with a
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Figure 4.6: Extensive Scalings of DCH and DKLD for increasing subsystem sizes are
obtained by computational homology (a) and a modified KLD algorithm based on a
Fourier method (b), respectively for fraction f = 0.7 in D-I. The number of images, at
given observation times, used at each data point in computations is labeled. The linear
lines are drawn to guide the extensitivies to eye. Choosing f very close to 1 may include
experimental errors, whereas choosing it too small may exclude necessary modes and
states necessary to describe the dynamics. But, for the range 0.5 ≤ f ≤ 0.9, extensive
scalings of dimensions normalized by the maximum dimension at each f nearly fall
on a single curve.
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Figure 4.7: The rates of increase ρ estimated from extensive scalings of DCH (open
symbols) and DKLD (closed symbols) are shown as a function of r/Γ to indicate the
sidewall effects in the experiments, D-I (squares), D-II (circles), D-III (diamonds), at
ǫ = 0.8. The number of images used for computations in D-II and D-III is given in
Table 4.1. Also, ρ as dimension per area is obtained from conventional KLD algorithm
(asterisks) by sampling the data of 10, 000 images in D-I with an annular window of
inner r and outer r + 2d radius (5d ≤ r).
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boundary of any shape. It is far easier to compute DCH than DKLD since the CH

analysis is carried out separately for each snapshot.

We demonstrate the convergence for both KLD and CH analyses of our data by

using different sampling methods. In one approach, we change the sampling rate,

thereby changing both total observation time and the number of images in the anal-

ysis. We find both DKLD and DCH converge provided that sufficiently large data sets

are used in computations [Fig. 4.6]. We also compute extensive scaling of DCH by

using samples randomly chosen from the data; DCH exhibits exactly the same scaling

with the subsystem sizes in data sets of 25, 000 images selected either randomly or a

fixed sampling period of 451th.

As the analyzed subsystem size approaches the physical size of the experiment,

both DCH and DKLD deviate from scaling in the same way (Fig. 4.7). To compare

this deviation in both dimensions quantitatively, we use an intensive quantity ρ =

∂D/∂A measured as a function of the radial distance from the cell center. For each

dimension, the values of ρ are normalized to remove parametric dependence on the

choice of f ; moreover, the radial distance r is normalized by the aspect ratio Γ. In

this represention (Fig. 4.7), ρ = 1 (for small r/Γ) indicates both DCH and DKLD

scale linearly with the area; however, ρ becomes significantly less than one for both

DCH and DKLD for r/Γ sufficiently large. Remarkably, the deviation of ρ from unity

exhibits a similar functional dependence on r/Γ for both DCH and DKLD.

Our results suggest the deviation from scaling for DCH and DKLD measures the

impact of lateral boundaries (sidewalls) on the chaotic flow (Fig. 4.7). Sidewalls affect

convection patterns due to the mismatch in the thermal conductivities of the sidewall

and the fluid; sidewall effects have previously been probed primarily at small ǫ near

convection onset [15, 31]. Here, we examine the effect of sidewalls far from onset

by comparing the behavior of ρ for experiments with different sidewall conditions

at ǫ = 0.8. We see that ρ for both DCH and DKLD exhibits the same deviation
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from scaling for experiments in different sized convection cells, as long as the lateral

boundary conditions are similar (experiments D-I and D-II in Fig. 4.7). However,

in experiments where the (plastic) lateral boundaries increase sidewall forcing of the

convective flow (D-III in Fig. 4.7) ρ for both DCH and DKLD deviates from scaling

at smaller r/Γ than for experiments with (paper) lateral boundaries where sidewall

forcing is weaker (D-II in Fig. 4.7). More specifically, for both DCH and DKLD, ρ

decreases by 25% (from unity) at r/Γ = 0.83d in D-I and D-II and at r/Γ = 0.70d in D-

III (at r = 21d). Moreover, our measurements are robust with respect to nonlinearities

associated with shadowgraph imaging do not alter our results; measurements of DCH

and DKLD, computed for the full circular system and a circular region (r = 15d) from

long time series of shadowgraph images, fluctuate only 3% and 10%, respectively, as

the effective optical distance is varied over an order of magnitude in experiments [38].

4.2 Transition to Spiral Defect Chaos

4.2.1 Introduction

In this section, we present the use of Karhunen-Loève decomposition (KLD) and

computational homology (CH) to obtain quantitative information (entropy) about

the pattern dynamical complexity as a function of thermal driving (ǫ) in Rayleigh-

Bénard convection (RBC) experiments. Information is obtained from the probability

distributions constructed from the outputs of CH in order to identify different spatio-

temporal states at different control parameters in experiments. We obtain analogous

information content at the same parameter values captured by normalized eigenvalue

spectra obtained by the KLD from the same experimental data. In particular, CH

entropy SCH and KLD entropy SKLD are used to detect the transition to the state of

spiral defect chaos (SDC). Converged estimates of both information entropies can be

achieved in moderate amount (a couple of thousand images) of experimental data, in

which, however, the homology dimension DCH and the KLD dimensions DKLD (see
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(a) (b)

Figure 4.8: Shadowgraph snapshots of convective patterns in the experiment taken
at (a) ǫ = 0.625 (below the onset of spiral defect chaos) and (b) ǫ = 0.75 (above the
onset of spiral defect chaos).

Section 4.1.3 and see Section 4.1.4) most likely fail to converge. (Both dimensions

require large number of experimental data in long experimental observation times.)

The experimental data is acquired in a cylindrical convection cell of aspect ratio

Γ = 35, where convective gas CO2 is confined. The Prandtl number Pr is near 1

and the vertical diffusion time tv is approximately 1.7 s in the experiment. Time

series of 15000 shadowgraph images are captured at five increasing ǫ values in 50th

(th = Γ2tv). As we will demonstrate by the information entropy, the transition to

SDC occurs for ǫ > 0.625 (See Fig. 4.8) in our experiment. Before we apply entropy

analysis on the experimental data, we first apply a variety of statistical measures,

previously proposed to detect the onset of SDC [33, 7], on the same data to verify the

value of ǫ for which the transition to SDC occurs. Although these measures do not

provide a complete description of the complex state, they are sensitive to the changes

in the global features of the pattern.

4.2.2 Other Analysis Methods

First, we calculate the spatially varying roll curvature C (see Section 2.6) as a measure

of the structure of the pattern in the experimental data. In Fig. 4.10 (a), C over

many patterns is shown as a function of ǫ. The increase in the slope at ǫ = 0.75
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indicates a change in the curvature due to the presence of the spirals and the center

defects. We note that cold and hot flows have nearly the same κ at a given value of ǫ.

Second, we compute the time averaged structure factor S(k) by a moderate amount

of uncorrelated space-time data. We averaged the structure function azimuthally to

obtain a wave-number distribution from which we calculated the skewness S3 and

the excess kurtosis K4 (see Section 2.5). As seen in Fig. 4.10 (b), the appearance of

spirals triggered a sudden jump both in S3 and K4. Furthermore, we averaged the

structure function radially for each image to obtain the angular power distribution

as a function of time. Fig. 4.9 represents the power spectra as angle-time plots for

five increasing ǫ values. At each ǫ, 1000 images corresponding to roughly 4000tv are

used to produce the plots. The horizontal and the vertical axes are the angle from

0 to π and the time, respectively. For ǫ ≤ 0.625, there is a single orientation in the

distribution indicating that the pattern is mostly composed of slightly curved rolls.

On the other hand, for larger ǫ (ǫ ≥ 0.750) the distribution is more uniform due to

the presence of spirals in the pattern. We quantify the angle-time plots using the

intermittency fraction FI [33] defined as the fraction of time in which the standard

deviation of the distribution is greater than 30◦. As demonstrated in Fig. 4.10 (c)

showing FI as a function of ǫ, the existence of spirals causes the roll orientations to

have a more azimuthally symmetric distribution.

4.2.3 Information Entropy

We investigate the evolution of the homology states (Section 4.1.3) from the time

series of Betti numbers constructed from successive computations in the time series

of shadowgraph images. We record the probabilities pi of the CH states, observed in

five different sets of ǫ in the experiment, in descending order. Fig. 4.11 demonstrates

the behavior of the probability distributions as a function of ǫ. The distribution

shows lower decays with increasing ǫ, meaning that the CH states are getting more
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(a) (b) (c) (d) (e) (f)

Figure 4.9: Angle-time plots of radially-averaged structure function: (a) ǫ = 0.375,
(b) ǫ = 5, (c) ǫ = 0.625, (d) ǫ = 0.750, (e) ǫ = 0.875, (f) ǫ = 1.0. The power is
greyscale coded with black corresponding to maximum power.
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Figure 4.10: (a) the average roll curvature κ (b) the skewness S3 and the excess
kurtosis K4 (c) the intermittency fraction FI , as a function of ǫ detect the transition
to SDC.
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Figure 4.11: The 350 first largest probabilities pi are shown on a logarithmic scale
for five different increasing ǫ. 15, 000 images corresponding to 50th have been used in
computations at each ǫ.

equiprobable. At ǫ = 0.375, the distribution exhibits a decay over 2 orders of magni-

tude (forming 98% of the total probability; f = .98) for the DCH = 350 (see Eq. 4.1)

first largest probabilities. The decay is less than an order of magnitude at ǫ = 1.0,

where the same number of probabilities ( DCH = 350) now only defines 25% of the

probability (f = .25).

We apply KLD analysis (Section 4.1.4) to the same experimental data used in

CH analysis. We obtain the eigenvalues λk in descending order for five values of ǫ.

Fig. 4.12 demonstrates the behavior of eigenvalue spectra at the same ǫ values shown

in Fig. 4.11. The spectrum displays lower decays with increasing ǫ, implying that

more KLD modes are required to describe the dynamics accurately in the data. By

keeping the DKLD = 350 (see Eq. 4.3) first largest eigenvalues, the spectrum shows

a decay over 3 orders of magnitude (f = .97) at ǫ = 0.375. At ǫ = 1.0, the same

number of 350 eigenvalues specifies only 63% (f = .63) of the total spectrum, and

the decay is less than an order of magnitude.
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Figure 4.12: The 350 first largest eigenvalues λk are shown on a logarithmic scale
for five different increasing ǫ. 15, 000 images corresponding to 50th have been used in
computations at each ǫ.

The variations in the number of KLD modes can be used as an indicator to detect

changes in the dynamics. It is advantageous to obtain a measure that quantitatively

characterizes eigenvalue spectra at different fractions. We use Shannon’s information

entropy [52] as a measure of the compressibility of complex data, which proportion-

ally quantifies dynamical complexity present in data. By considering the normalized

eigenvalues λk as the probabilities being in state k [22], the entropy is given by

SKLD = −
∑

k

λklogλk, (4.4)

measured in nats. A similar connection between the information entropy and CH can

also be made to quantify probabilities constructed from the Betti numbers;

SCH = −
∑

i

pilogpi. (4.5)

In Fig. 4.13, the behavior of SKLD and SCH are shown as a function of five different

ǫ values for different values of f . The monotonically increasing behavior of entropies
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Figure 4.13: Information entropies SKLD and SCH are shown as a function of ǫ in
the experiments at different f . At each ǫ, 15, 000 images recorded in 50th are used to
compute the entropies. The error bars are the statistical standard error based on the
eigenvalue spectra and the probability distributions.
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appears not to depend on the choice of f . The jumps in both entropy values between

ǫ = 0.625 and ǫ = 0.75 correspond to the transition to SDC observed in the experi-

ments. SCH is more sensitive to this transition. Alterations in the roll curvature and

orientation can effect the number of required KLD modes for accurate description of

the system. Homology of a pattern, on the other hand, does not necessarily change

unless the connectivity within the pattern changes under the influence of the defects.

SDC is an interplay between spirals and other roll defects. After the transition, SKLD

and SCH increase approximately linearly with ǫ, expressing that the states defined by

the outputs of both methods become more and more equally likely as the complexity

of the pattern increases. SCH and SKLD have similiar responses below the transition;

both show a slight increase between ǫ = 0.375 and ǫ = 0.5, where the nonspiral defects

start to appear in more interior regions of the pattern.
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CHAPTER V

CONCLUSION

We have studied chaotic hot and cold flow patterns acquired from Rayleigh-Bénard

convection (RBC) experiments performed under well-controlled conditions. By means

of the output of computational homology (Betti numbers), we have efficiently mea-

sured not only the spatial structures of the patterns but also their spatio-temporally

chaotic dynamics in large experimental data sets. We have compared homology results

to other well-known pattern characterization techniques, and showed that homology

reveals essential quantitative features of the patterns that other methods fail to de-

tect. We have also demonstrated that similar information about the dynamics of the

patterns captured by other techniques can be extracted more rapidly and effectively

from computational homology.

In chapter 3, we showed that homology is a quantitatively useful tool to investigate

the breakdown of the Oberbeck-Boussinesq (OB) approximation (the breaking of the

reflection symmetry) in laboratory and numerical studies of thermal convection. We

analyzed the data acquired under a range of experimental conditions where non-

Oberbeck-Boussinesq effects (NOB), measured by the Busse parameter Q (0.65 ≤

Q ≤ 2.80), are systematically varied. The asymmetries between cold and hot flows

due to the NOB effects were measured by the difference between time-averaged Betti

numbers, i.e, by the order parameter 〈∆β0〉 = 〈β0c−β0h〉. (These asymmetries are not

observable by conventional statistical measures (Section 3.4)). We obtained a single

curve of the order parameter 〈∆β0〉 as solely a function Q (Fig. 3.8), showing that the

strength of NOB effects can be readily measured by homology analysis of patterns.

The question still remained unanswered is what physical mechanism is responsible
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for the dependence of 〈∆β0〉 on Q, especially in the state of spiral defect chaos. We

believe that the topological asymmetry is caused by a defect mechanism intrinsic to

NOB convection. Our results suggest that homology can be used in a wide variety

of cases in fluid dynamics where NOB effects play an important role, for example, in

the atmospheric sciences where OB approximation is extensively used. Furthermore,

homology may offer new insights in other pattern forming complex systems which

exhibit symmetry breaking.

In chapter 4, we introduced the dimension DCH of computational homology (CH)

to measure the number of degrees of freedom (DOF) of extensively chaotic systems

from large experimental data sets. We attained DCH at given control parameters in

experiments from the probability distribution of homology states constructed from

long time series of Betti numbers. We acquired analogous dimension DKLD at the

same parameter values from normalized eigenvalue spectrum obtained by a modified

Karhunen-Loève decomposition (KLD). (Computing DKLD from conventional KLD

is impractical in large data sets like ours; the modified KLD is only applicable to

the systems with translational or rotational symmetries). Despite the fact that both

methods quantify the dynamics in a different manner, we demonstrated that DCH

and DKLD scale at similar rates with system size as new chaotic DOF enter the

dynamics. In particular, from converged estimates of DKLD and DCH, we showed

that the state of spiral defect chaos (SDC) is extensively chaotic (Fig. 4.6), i.e, the

number of DOF scales linearly with the system size; moreover, we found the presence

of physical boundaries in experiments leads to deviations from extensive scaling that

are similar for both methodologies (Fig. 4.7). Relating experimentally accessible

measures of the number of DOF (e.g., DCH and DKLD) to more direct measures (e.g.,

the Lyapunov dimension Dλ) remains an open question. Recent direct simulations of

RBC by Duggleby and Paul [17] yielded the relationship DKLD ≈ 19.7Dλ from the

variation of both dimensions with a range of system sizes 6 ≤ Γ ≤ 15 in a cylindrical
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Figure 5.1: A space-time block formed from a time series of binary images for hot
flows and a slice taken from the block are shown. The homology for the space-time
block yields the number of distinct components (β0h = 32), the number of tunnels
through the block (β1h = 55), and the number of cavities enclosed (β2h = 10).

convection cell. The creation and annihilation of defects, as a global signature of the

complex spatio-temporal behavior of SDC, are the primary reasons for the variations

in topological states, and Dλ may be closely related to their statistics [19]. Our results

suggest that examining the effect of finite system size on Dλ may provide a way to link

Dλ quantitatively to DCH and DKLD. In this regard, future studies that couple RBC

laboratory experiments with numerical simulations with realistic boundary conditions

at the same parameter values would be of greatest value.

Furthermore, in chapter 4, information entropy SCH was obtained from the proba-

bility distributions constructed from a time series of Betti numbers to identify different

spatio-temporal states at different control parameters in experiments. Specifically, we

used SCH to detect the value of the control parameter ǫ for which a distinct transition

to SDC occurs in experiments (Fig. 4.13). SDC is subjected to different selection

mechanisms based on the aspect ratio Γ [7]. The value of ǫ measured at the onset of

SDC is different for different values of Γ. We found the state of SDC for ǫ > 0.625 in

an experiment with Γ = 35. In previous experimental studies, the state of SDC was

observed for ǫ > 0.24 and ǫ > 0.55 in larger cells with Γ = 78 [43] and Γ = 40 [33],

respectively. The origin of this Γ dependence is still unknown. SCH might provide
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further understanding for the lateral size dependence on the SDC transition observed

in experiments as a function of Γ. Moreover, these measures can also be used to

study transitions from a more ordered state to a complex state in other systems; for

example, they can be used to investigate different mechanisms of spiral wave breakup

in cardiac arrhythmia [21].

Homology can be extended to higher dimensions by performing an analysis on

space-time blocks formed from time series of two-dimensional shadowgraph images.

Fig. 5.1 shows a space-time block formed by subsequent images describing the evolu-

tion of hot flows. In addition to the zeroth and the first Betti numbers, the compu-

tations yields the second Betti number representing the number of enclosed cavities

within the hot space-time block. Although the homology analysis, in this disserta-

tion, is only based on the Betti numbers obtained from individual images, space-time

homology analysis, in the future, may offer further insights into the chaotic dynamics

in Rayleigh-Bénard convection.
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APPENDIX A

NONDIMENSIONALIZED BOUSSINESQ EQUATIONS

Here, we derive well-known nondimensionalized Oberbeck-Boussinesq equations which

are widely used to study Rayleigh-Bénard convection [10]. We consider a horizontal

layer of convective fluid of depth d, which is laterally unbounded in the xy-plane and

confined in the z-direction by two solid plates. The state of a fluid is described by

two scalars and one vector field: pressure P (x, t), temperature T (x, t), and velocity

V(x, t). The equations describing the state of an incompressible convective fluid are

the Navier-Stokes equation

DV

Dt
= ∂tV + (V · ∇)V =

1

ρ
F − 1

ρ
∇P + ν∇2V (A.1)

with the incompressibility condition

∇ ·V = 0 (A.2)

, and the heat equation

DT

Dt
= ∂tT + (V · ∇)T = κ∇2T (A.3)

where D indicates the material (Lagrangian) derivative, F = −gρ(T )ẑ is the gravita-

tional force per unit volume, ν the kinematic viscosity, ρ the density, κ the thermal

diffusivity, and g the acceleration of gravity. In the Boussinesq approximation, ν, κ

and the thermal expansion coefficient α are assumed to vary little within the layer.

The density is considered to be constant in the equations except in the buoyancy term

which drives the convective flow. For small temperature difference ∆T = Tb − Tt (Tb

and Tt are the bottom and the top layer temperature, respectively) between the layers

and for small α, we can write the density as a linear function of the temperature

ρ = ρ̃(1 − α(T − T̄ ))
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where the reference density ρ̃ is measured for the mean temperature T̄ = (Tb + Tt)/2

of the cell.

In the uniform base state, e.g, heat is only transported by conduction, there is no

fluid motion in the convectionless state, i.e,

Vcond = 0 (A.4)

We choose the coordinate along the z-direction such that the top and the bottom

layer of the fluid is at z = d/2 and z = −d/2, respectively. The steady state solution

for Eq. A.3 with the boundary conditions T cond(z = d/2) = T cond
t and T cond(z =

−d/2) = T cond
b yields

T cond(z) =
∆T cond

d
z + T̄ cond (A.5)

and from Eq. A.1 we get

−gρ̃cond(1 − α(T cond − T̄ cond))ẑ = ∇P

from which we obtain an expression for the steady state pressure with the help of

Eq. A.5

P cond(z) = −gρ̃cond(z +
α∆T cond

2d
z2) + P̃ cond

Next, we examine the behavior of infinitesimal disturbances to the base state

solutions. We define Σ = V − Vcond, Θ = T − T cond and Ψ = P − P cond , and we

linearize the equations with respect to the perturbed quantities Σ = (Σx, Σy, Σz),

Θ and Ψ. From Eq. A.1, Eq. A.2 and Eq. A.3, we reach the following linearized

equations with the use of Eq. A.4, Eq. A.5, and Eq. A.6

∂tΣ + (Σ · ∇)Σ = gαΘẑ− 1

ρ
∇Ψ + ν∇2Σ

∇ · Σ = 0 (A.6)

∂tΘ + (Σ · ∇)Θ = κ∇2Θ + Σx
∆T

d
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where the system is perturbed while T̄ is kept constant and the fluid properties are

evaluated at T̄ .

We can further simplify the equations by non-dimensionalizing them. In non-

dimensionalization, a natural choice for the length scale is the depth of the fluid layer

d. On the other hand, there are two possible choices for the time scale based on the

viscous time scale d2/ν or the diffusive time scale d2/µ. Both may have different

implications in terms of reducing the nonlinearities in the equations for the fluids

having large or small Prandtl number σ = ν/µ. For gases, σ is near one so all

nonlinear terms are important in the equations describing the fluid state. We rescale

Eq. A.6 with the non-dimensional variables x′, t′, Σ′, Θ′, and Ψ′

x = dx′, t =
d2

ν
t′, Σ =

ν

d
Σ′, Θ =

ν2

gαd3
Θ′, Ψ =

ρν2

d2
Ψ′

, then Eq. A.6 takes the form

∂tΣ + (Σ · ∇)Σ = Θẑ −∇Ψ + ∇2Σ (A.7)

∇ · Σ = 0 (A.8)

σ(∂tΘ + (Σ · ∇)Θ) = ∇2Θ + RΣx (A.9)

where we dropped the primes and introduced two dimensionless number; the Rayleigh

number R and the Prandtl number σ

R =
αg∆Td3

νκ
, σ =

ν

κ

Eq. A.7, Eq. A.8 and Eq. A.9 are known as the nondimensionalized Oberbeck-

Boussinesq equations.
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APPENDIX B

GAS PROPERTIES

In order to extract more information about the convective state in experiments, it

is required to know some of the thermophysical properties of the convective fluids.

Mainly, we use two convective single phase gaseous; carbon dioxide (CO2) and sulfur

hexafluoride (SF6). In the following, we derive some important fluid properties for

these gaseous.

The virial equation of state defining the deviation of a real gas from an ideal gas

state with intermolecular interactions at pressure P and temperature T with specific

gas constant R can be written as

P

RT
= ρ + C1 (T ) ρ2 + C2 (T ) ρ3 + C3 (T ) ρ4 + . . . (B.1)

where, the first viral coefficient is set to one, C1 is the second virial coefficient, C2

the third, C3 is the forth, and so on. We neglect higher order corrections which

are insensitive to density calculations. Specific gas constants for CO2 and SF6 are

RCO2
= 1.889245 and RSF6

= 0.569268 in bar cm3/K gr, respectively.

B.1 Carbon Dioxide

For the density calculations we obtain virial coefficients from Eq. 5.68 of Vukalovich

and Altunin [54], where coefficients are defined up to eighth order, i.e, C7(T ). How-

ever, first four coefficients are good enough for an accurate description of the state in
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single phase region. These coefficients in Ref. [54] can be rewritten as

C1(T ) = 0.486590 + 47.199230 (96 + 0.003287310980T )−1 −

304.20
1.90843 + 5.3510e−0.003805391190T

T
− 58315340550T−8 (B.2a)

C2(T ) = 2.39169− 304.20
6.96190 − 12.1824 e−0.003805391190 T

T
+

635643.8252 T−2 − 94095430.63 T−3 (B.2b)

C3(T ) = −1.69007 + 304.20
10.2469− 6.38963 e−0.003805391190 T

T
−

1363421.826 T−2 + 206257780.7 T−3 (B.2c)

where T is in Kelvin and P is in bar. And their derivatives with respect to temper-

ature can be obtained,

d

dT
C1 = −0.1551585470 (96 + 0.003287310980 T )−2 + 6.194317601

e−0.003805391190 T

T
+ 304.20

1.90843 + 5.3510 e−0.003805391190 T

T 2
+

4.665227244× 1019 T−9 (B.3a)

d

dT
C2 = 304.20

6.96190 − 12.1824 e−0.003805391190 T

T 2
−

14.10234624
e−0.003805391190 T

T
− 1271287.650 T−3 +

282286291.9 T−4 (B.3b)

d

dT
C3 = −304.20

10.2469 − 6.38963 e−0.003805391190 T

T 2
+

7.396635688
e−0.003805391190 T

T
+ 2726843.652 T−3 −

618773342.1 T−4 (B.3c)

We solve Eq.(B.1) numerically with the coefficients in Eq.(B.2) for the density values

ρ < .2 gr/cm3, which is more than twice the maximum density value that could be

observed in experiments for the range of pressure (20 to 40 bar) and temperature

(10 to 60 ◦C). Density values obtained by this way produce the data of Iwasaki and

Takahaski [35] (298.15 K ≤ T ≤ 323.15 K and 23.89 bar ≤ P ≤ 41.05 bar) with a
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mean deviation of less than .9% and the data of Altunin and Gadetskii [2] (304.20 K

≤ T ≤ 323.15 K and 25 bar ≤ P ≤ 35 bar) with less than .02% for gaseous CO2.

To obtain the specific heat capacities cv at constant volume V and cp at constant

pressure P , we use the following well-known thermodynamic equation;

cp − cv = −T

(

∂V

∂T

)2

P

(

∂V

∂P

)

−1

T

=
T

ρ2

(

∂P

∂T

)2

ρ

(

∂ρ

∂P

)

T

, (B.4)

which can be rewritten using Eq.(B.1)

cp − cv = R

(

1 + C1ρ + C2ρ
2 + C3ρ

3 + Tρ
d

dT
C1 + Tρ2 d

dT
C2 + Tρ3 d

dT
C3

)2

(

1 + 2C1ρ + 3C2ρ
2 + 4C3ρ

3
)

−1
(B.5)

where cv is generally defined as

cv − co
v =

∫ ρ

0

−T

ρ2

(

∂2P

∂T 2

)

ρ

dρ (B.6)

and taking the integration with the use of Eq.(B.1) yields

cv − co
v

R
=

(

−2/3 T
d

dT
C3 − 1/3 T 2 d2

dT 2
C3

)

ρ3 +

(

−T
d

dT
C2 − 1/2 T 2 d2

dT 2
C2

)

ρ2 +

(

−2 T
d

dT
C1 − T 2 d2

dT 2
C1

)

ρ. (B.7)

co
v is given in a functional form in Eq.(6.6) of Vukalovich and Altunin [54], we write

it an explicit form as a function of temperature only;

co
v

R
= 5/2 + 1843200 e960T−1

T−2
(

e960 T−1 − 1
)

−2

+

3956121 e1989T−1

T−2
(

e1989 T−1 − 1
)

−2

+

11336689 e3367T−1

T−2
(

e3367 T−1 − 1
)

−2

. (B.8)

Therefore, at a given temperature and pressure and with a known density ρ, cv and

cp in J/gr K can be calculated with the help of Eq.(B.2) and Eq.(B.3).
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Table B.1: Coefficients aλ
ij for carbon dioxide are obtained from a fit of the poly-

nomial in Eq.(B.10) to the data in Ref. [54] with 31 points. The max and mean
percent deviations between the data and the conductivities acquired from Eq.(B.10)
are 0.054% and 0.014%, respectively.

aλ
ij × 100 0 1 2 3

0 0.014687705810562 0.000081952374639 0.000000008008702 -0.000000000303030
1 0.000122955979942 -0.000001427975840 0.000000003805913 0.000000000056818
2 -0.000001666125508 0.000000074206346 -0.000000000566017 -0.000000000000505
3 0.000000069953105 -0.000000002494048 0.000000000029690 -0.000000000000114

Table B.2: Coefficients aµ
ij for carbon dioxide are obtained from a fit of the polyno-

mial in Eq.(B.11) to the data in Ref. [54] with 39 points. The max and mean percent
deviations between the data and the shear viscosities acquired from Eq.(B.11) are
0.493% and 0.138%, respectively.

aµ
ij × 104 0 1 2 3

0 0.137327946387131 0.000380303947705 0.000002935099576 -0.000000027036114
1 0.000311238325553 0.000023913239482 -0.000001014429920 0.000000009348695
2 0.000013337193922 -0.000001929682463 0.000000068026423 -0.000000000622282
3 0.000000069918894 0.000000020944756 -0.000000000943756 0.000000000009249

The isobaric thermal expansion coefficient

α = −1

ρ

(

∂ρ

∂T

)

P

(B.9)

can be obtained either from a high order polynomial fitting or from a numerical

differentiation. We use the later with a central differencing scheme for ρ.

We obtain the thermal conductivity λ and shear viscosity µ from polynomial

fittings

λ =
i=3
∑

i=0

j=3
∑

j=0

aλ
ijP

iT j (B.10)

µ =

i=3
∑

i=0

j=3
∑

j=0

aµ
ijP

iT j (B.11)

to the data given in Table 10.5 and Table 9.10 of Ref. [54], respectively, for the range

of pressure in bar (10 to 40 bar) and temperature in ◦C (0 to 70 ◦C). The empirical

coefficients aλ
ij and aµ

ij are given in Table B.1 and B.2. We can therefore obtain the
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Prandtl number σ from the kinematic viscosity ν and the thermal diffusivity κ:

ν =
µ

ρ
(B.12)

κ =
λ

ρcp
(B.13)

σ =
ν

κ
. (B.14)

Conductivities obtained by Eq.(B.10) agrees well with the experimental data of Ulybin

and Bakulin [53] (280 K ≤ T ≤ 300 K and 10 bar ≤ P ≤ 40 bar) by less than 2.5%.

Shear viscosities obtained by Eq.(B.11) agrees by 4.6% with the data of Iwasaki

and Takahaski [35] (298.15 K ≤ T ≤ 323.15 K and 23.89 bar ≤ P ≤ 41.05 bar).

Furthermore, kinematic viscosities obtained by Eq.(B.12) agrees by less than 4.4%

with the data of Alexanders and Hurly [20] (285 K ≤ T ≤ 330 K and 27.08 bar ≤ P ≤

31.45 bar). Some thermophysical properties of CO2 are shown in Table B.3 at a given

temperature and pressure.

B.2 Sulfur Hexafluoride

For density calculations, we only keep virial coefficients C1(T ) and C2(T ) and ignore

higher ones in Eq.(B.1). We obtain virial coefficients as a function of T (270 K≤

T ≤340 K) from polynomial fits to the coefficient data of Funke et al. [23]

Ck(T ) =

i=6
∑

i=0

cikT
i, k = 1, 2 (B.15)

where C1(T ) and C2(T ) are given in cm3/mol and (cm3/mol)2, respectively. The

coefficients cik are given in Table B.4. Similar to the carbon dioxide case, we obtain

the density at given T and P by solving Eq.(B.1) numerically. Density values we

obtain reproduce the data of Scalabrin et al. [49] (275 K ≤ T ≤ 325 K and 5 bar

≤ P ≤ 20 bar) with a mean deviation of less than .0.005% and the data of Guder

and Wagner [27] (275 K ≤ T ≤ 340 K and 5 bar ≤ P ≤ 20 bar) with less than .009%

for single phase region.
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Table B.4: Coefficients cik are obtained from a fit of the polynomial in Eq.(B.15) to
the virial coefficient data in Ref. [23].

ci1 × 10−3 ci2 × 10−9

0 -9.493116566185545 -1.679567477438810
1 0.105170488343965 0.033047448102228
2 -0.000466725700421 -0.000270562967620
3 0.000000949472287 0.000001179747489
4 -0.000000000735768 -0.000000002889438
5 0.000000000000000 0.000000000003769
6 0.000000000000000 -0.000000000000002

We acquire heat capacities cv and cp from bilinear interpolations in the data of

Guder and Wagner [27] for the range of pressure 5 to 20 bar and temperature 270 to

350 K with 68 points for each heat capacities. We also check validation of Eq.(B.5),

i.e. deriving cp from cv. However, it introduces roughly 10% error which we belive

due to the absence of higher order virial coefficients in calculations.

We derive the thermal conductivity λ from a polynomial fit in Eq.(B.10) to the

data of Tanaka et al. [51] and of Bakulin and Ulybin [3] for the range of pressure in bar

(4.90 to 20.60 bar) and temperature in K (268.60 to 348.15 K). The shear viscosity is

also acquired from a polynomial fit in Eq.(B.11) to the data of Hurly et al. [34] and of

Wilhelm et al. [55] for the range of pressure in bar (4.85 to 20.43 bar) and temperature

in K (298.15 to 350.00 K). The coefficients obtained aλ
ij and aµ

ij are given in Table B.5

and B.6. Conductivities obtained agrees with the data of Kestin and Imaishi [37]

(297.66 K ≤ T ≤ 297.71 K and 7.99 bar ≤ P ≤ 22.00 bar) by 3.9%. Shear viscosities

agrees by 0.17% with the data of Hoogland et al [29] (298.11 K ≤ T ≤ 333.17 K and

1.04 bar ≤ P ≤ 22.27 bar). Kinematic viscosity derived by extrapolation agrees by

1.85% with the data of Alexanders and Hurly [20] (T = 273.16 K and 4.92 bar ≤ P ≤

10.00 bar). Some thermophysical properties of SF6 are shown in Table B.7 at a given

temperature and pressure.
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Table B.5: Coefficients aλ
ij for sulfur hexafluoride are obtained from a fit of the

polynomial in Eq.(B.10) to the data in Ref. [51] and Ref. [3] with 33 points. The
max and mean percent deviations between the combined data and the conductivities
acquired from Eq.(B.10) are 1.651% and 0.425%, respectively.

aλ
ij × 100 0 1 2 3

0 0.000042484300260 0.000292256061780 0.001721854423803 -0.000046172772550
1 0.000107395927164 -0.000034470624355 -0.000013095202822 0.000000372564981
2 -0.000000519101832 0.000000214849321 0.000000030691498 -0.000000000943400
3 0.000000001004146 -0.000000000340530 -0.000000000020780 0.000000000000729

Table B.6: Coefficients aµ
ij for sulfur hexafluoride are obtained from a fit of the

polynomial in Eq.(B.11) to the data in Ref. [34] and Ref. [55] with 174 points. The
max and mean percent deviations between the combined data and the shear viscosities
acquired from Eq.(B.11) are 0.161% and 0.028%, respectively.

aµ
ij × 107 0 1 2 3

0 0.005802216552301 0.000177451595046 0.007659856682402 0.170292955119589
1 0.623383021287037 -0.012890441326356 -0.001644234942827 -0.001424879790229
2 -0.000547832044993 0.000082574337738 0.000009382411101 0.000004001750561
3 0.000000569018434 -0.000000126893967 -0.000000013224966 -0.000000003769547
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