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CHAPTER 1 

Introduction 

A central approach in dynamical systems investigations is to vary a stress parameter 

and examine the influence of nonlinearity on the different levels of complexity dis-

played by the system. Traditionally, these investigations have focused on examples 

in the limits of a few or infinitely many degrees of freedom. Systems in the limit of a 

few degrees of freedom are spatially discrete and low dimensional, while those in the 

opposite limit are continuous and spatially extended. Many of the dynamical systems 

concepts (including chaos) have been formalized in the few degrees of freedom limit 

where phase space structures provide a convenient means of dynamics description. 

An example of a system with a few degrees of freedom is an array of three Joseph-

son Junctions. A single Junction is produced by separating two superconductors by a 

layer of weakly insulating material, the thickness of the layer depends on the material 

used. When a relatively small bias current I is applied across a Junction, electrons 

in Cooper pairs will pass (tunnel) through the weak insulator without any resistance, 

so there is no voltage across the Junction. Increasing I, there is an abrupt transi-

tion after which the current is not strictly superconducting. The emerging voltage 

oscillates at up to terahertz frequencies. Applying Kirchhoff's laws, a single Junction 

may be mapped onto the ordinary differential equation of a damped pendulum under 

1 



constant torque. Due to its physical properties, each Josephson Junction will possess 

its own intrinsic oscillation frequency. In the example, the array of Josephson Junc-

tions may be described by three coupled pendulums, each with its own characteristic 

frequency. As I (the stress parameter in this case) across the coupled Junctions is 

varied, the voltage may display a range of behaviors from zero signal to quasiperi-

odic oscillations. One of the more substantial contributions of dynamical systems has 

been the appreciation of the levels of complexity possible in the limit of only a few 

degrees of freedom. Chaos, for example, only requires three degrees of freedom to be 

an accessible state. 

Spatially extended systems, not surprisingly, are also capable of a large range of 

behaviors as a stress parameter is varied. One of the most extensively studied and 

well understood examples is a fluid layer of horizontal extent with an upper bounding 

surface at a temperature T1  and a lower bounding surface at a higher temperature T2 

( T2 > T1 ). At relatively small temperature difference AT = T2 - T1 , heat is simply 

conducted across the layer and there is no fluid motion. As AT is increased fluid 

motion occurs at a well defined threshold, resulting in spatial variations (patterns) 

with some regular periodicity. With increasing driving (AT) the fluid motion becomes 

more complex, eventually aperiodic. 

Prior to the developments of dynamical systems the transition to turbulence was 

understood to be due to a large number of discrete transitions, each of which intro-

duced a different frequency into the fluid velocity field. This picture of the transition 

to turbulence proposed by Landau [3] results generically in complex flow and a rel-

atively high dimensional quasiperiodic attractor. By contrast, the transition to tur-

bulence originally proposed by Ruelle & Takens [4] indicates turbulence generically 
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occurs after only four Hopf bifurcations. Ruelle, Takens, & Newhouse clarified the 

earlier ideas about the onset of aperiodic behavior by showing (1978) that after three 

Hopf bifurcations a strange attractor was likely, although three period quasiperiodic 

behavior could also exist. This dynamical systems description predicts turbulence 

is an aperiodic behavior associated with a strange attractor. Experimental evidence 

questioning the Landau picture was first reported by Ahlers [5] in 1974 and supported 

by the numerical work of McLaughlin & Martin [6]. Both of these investigations ex-

amined heat flow in a fluid layer as an imposed AT was varied and showed that 

aperiodic behavior was not the result of a large number of discrete transitions. Sub-

sequently, several investigators studied the onset of aperiodic behavior in a variety of 

fluids with an imposed temperature difference, as well as in other fluid experiments. 

These experimental results in various systems supported different routes to aperiodic 

behavior that all shared the characteristic that only a few bifurcations were required 

for aperiodic behavior to arise. In this limit of infinitely many degrees of freedom, 

dynamical systems investigations have shown that aperiodic behavior is in some sense 

not as complicated as previously thought. 

1.1 Spatially Extended Systems 

Behavior of spatially extended systems as they are driven away from equilibrium 

remains an active area of research across a large number of disciplines [7]. Under-

standing of the mechanisms for the transition from uniform states to patterns of a 

single wave number are relatively well developed in a large number of examples. The-

oretical descriptions of the nonequilibrium systems are typically based on microscopic 
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considerations which result in equations of motion that are continuous in space and 

time. The complexity of these partial differential equations typically elude analytical 

treatment and require sophisticated techniques to solve numerically. To determine 

the transition from a uniform state to a pattern, the appropriate equations of motion 

are linearized about the uniform state. Stability of the uniform state is studied by 

considering a set of discrete wave numbers. When the largest real eigenvalue for a 

given value of the stress parameter over all wave numbers is negative the uniform state 

is stable. A positive largest eigenvalue indicates the uniform state is unstable to the 

corresponding wave number. The border between a stable and unstable uniform state 

corresponds to a zero largest real eigenvalue, marginal stability. Typically, a single 

wave number qc  will be marginally stable at a critical value of the stress parameter. 

Pattern structure near onset can be investigated by applying perturbation meth-

ods to produce model equations for the pattern amplitudes. These amplitude equa-

tions may be derived from first principles or written by inspection, but are exact only 

in the limit of onset [7]. The general form of an amplitude equation is 

0/ Ai  = eAi  + 	gij (AiA + c.c.) 	gi3 k(A2AjAk + c.c.) + 	 (1) 
7 ,k 

where A's are complex and g's are properly chosen constants. Though still generally 

partial differential equations, amplitude equations are much simpler than the original 

equations of motion. Symmetries present in the system are reflected by the struc-

ture of the terms in the amplitude equations and play a major role in selecting the 

planforms present at onset. 
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1.1.1 Rayleigh-Benard Convection 

A fluid layer with an imposed temperature difference is a canonical example of a 

spatially extended system. In equilibrium the fluid layer will be in a macroscopically 

uniform state; homogeneous and isotropic. One way to drive the fluid out of equi-

librium is to bring it into contact with a heat reservoir, say by heating the bottom 

surface while keeping the top surface at constant temperature T 1  (Rayleigh-Benard 

convection). For sufficiently small AT the laterally uniform state persists as a lin-

ear gradient is established in the vertical temperature field. With increasing AT 

an unstable situation arises as it becomes energetically favorable for a hotter (thus 

lighter) volume element near the bottom to change positions with a cooler (heavier) 

element near the top despite viscous damping. This buoyancy driven instability leads 

to the emergence of fluid flows as the mechanism for enhanced heat transport and 

results in patterns in the fluid fields: temperature, velocity, and pressure. Near the 

onset of fluid motion flows form regular periodic structures whose spatial structure is 

determined by system symmetries. 

A Rayleigh -Benard convection system (of infinite horizontal extent) may be de-

scribed by only two dimensionless quantities: Rayleigh number R and Prandtl number 

Pr. These quantities are defined in terms of the dimensional properties of fluid: kine-

matic viscosity v, thermal diffusivity IC, thermal expansion coefficient a, AT, vertical 

fluid depth d, and gravitational acceleration g, by 

gad'AT 
R 	 and Pr = —

v
. (2) 

Conceptually, R may be thought of as a nondimensional AT, properly normalized 

by the fluid physical properties and depth of the layer. For a fluid of infinite lateral 
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extent, regardless of the working substance, convection occurs for R > 1708. The 

characteristic system length scale is d, while the vertical diffusion time t v  = d2 /K and 

vertical viscous relaxation time = d2 /v serve as characteristic temporal scales. In 

these terms the Prandtl number may be understood as the ratio of the two temporal 

scales (Pr = tu tt ii ). 

In the original experimental work reported by Benard [8, 9] a dish of fluid was 

heated from below producing a pattern of regular hexagons near onset. These obser-

vations were later (1916) explained by Lord Rayleigh [10] in terms of the buoyancy 

driven instability described in the previous paragraph. Due to their contributions 

buoyancy driven instability in a fluid layer with an imposed temperature difference 

and no free surfaces became known as Rayleigh-Benard convection. Subsequently 

(1958), the hexagons Benard observed were explained by Pearson [11] to be due to 

a surface tension instability that preceded the buoyancy instability considered by 

Rayleigh. Studies of the former instability are now known as surface tension driven 

Benard convection (or Benard-Maringoni convection). 

Onset planforms selected by patterns depend on the degree to which inversion 

symmetry is present. Inversion symmetry requires field equations to be invariant 

under inversion of the field variables (A —A) [7]. In Rayleigh-Benard convection 

an example of inversion symmetry is the property that a pattern (for example, stripe 

state velocity field) becomes inverted after a spatial reflection about the fluid layer 

mid plane. This so-called Boussinesq symmetry requires any equation description [for 

example, Eq. (1)] be invariant under the reflection of the field variables. The degree 

to which Boussinesq symmetry is present determines the significance of terms with 

even power exponents in the amplitude equations. In a perfectly Boussinesq fluid the 
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Figure 1: Bifurcation diagram for classical Rayleigh-Benard convection at onset in 
a non-Boussinesq fluid in terms of pattern amplitude A as the stress parameter R 
is varied. For increasing R onset occurs at Solid lines are stable solutions and 
dashed lines are unstable solutions. This diagram is appropriate for hexagons with 
downflowing centers (light). For the upflowing centers (dark) the hexagon bifurcation 
diagram would be reflected about A = 0. 

7 



quadratic coefficient [gi3  in Eq. (1)] would be zero. As this approximate symmetry is 

increasingly violated the magnitude of the quadratic coefficient grows. In Rayleigh-

Benard convection where there is no free surface Boussinesq symmetry is exact in the 

limit where the fluid density varies linearly with temperature and all the other fluid 

properties are not temperature dependent, thereby independent of vertical position. 

When the Boussinesq symmetry is present the leading order nonlinear term is cubic 

[Eq. (1)] and parallel stripes (single wave), which have no preferred orientation, are 

observed at onset. The amplitude of these stripes increases continuously from zero 

at onset. In the absence of Boussinesq symmetry regular hexagons (superposition 

of three waves each separated by 60°) are found at onset (Fig. 1). The leading 

order nonlinear term is then quadratic which allows two modes to resonate (interact) 

with a third according to a resonant triad condition. This wave number resonance 

stimulates three modes at the critical wave number qc  separated by 60° in the wave 

number domain. At onset the hexagon amplitude appears discontinuously as shown 

in Fig. 1. Moving away from onset the hexagons and stripes become simultaneously 

stable RT  < R < Rb and eventually R > Rb hexagons lose stability to parallel stripes 

provided the side wall influence is minimal. The parameter range over which hexagons 

are observable increases as the Boussinesq symmetry is increasingly violated. In this 

way linear terms dictate the critical point (stress parameter & wave number) while 

nonlinear terms select the pattern structure near onset. 

1.1.2 Taylor-Couette Flow 

Another commonly studied pattern forming system discussed in this dissertation is 

the flow of a Newtonian fluid between two concentric cylinders, one or both of which 
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are rotating (Taylor-Couette flow). At rotation rates below a critical value only the 

azimuthal velocity field is non vanishing (uniform state). At a critical value in rotation 

rate Taylor Vortices [12] form as radial and axial components arise in the velocity 

field forming a pattern. Axial periodicity occurs at roughly twice the gap between 

the cylinders [13]. With increasing angular velocity, Taylor Vortices will lose stability 

to more complicated states, until at large enough angular velocity aperiodic flows are 

observed. Experimental studies of this system also reported [14] early indications that 

the Ruelle-Takens picture of the route to turbulence is a more appropriate description 

than the Landau picture. When fluid motion in the annulus is (near) laminar the 

fluid is Newtonian; viscous stresses are proportional to the velocity gradient. 

While contemporary Taylor-Couette studies are interested in the bifurcations, 

symmetry-breaking and associated pattern complexities that occur as the rotation 

rates are varied in smooth and spatially complicated containers, interest in fluid 

motion between two rotating cylinders can be traced back at least as far as Sir Isaac 

Newton. In Principia (1687) Newton wrote about the expected flow in a annulus 

between two rotating infinitely long cylinders [15] (section 9, book II). By 1888, Arnulf 

Mallock and Maurice Couette had separately built the first experimental devices to 

rotate cylinders about a fluid annulus, although their primary goal was to determine 

viscosity. In 1923 [12] Taylor considered the annulus fluid motion and compared 

predictions arising from the equations formulated by Navier (1823) and Stokes (1845) 

for the onset of laminar flow with his experimental observations. Taylor performed 

the associated linear stability without the benefit of computers and his results were 

considered confirmation of both the Navier-Stokes equations and no-slip boundary 

conditions. 
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1.1.3 Faraday Surface Waves 

Both of the pattern forming systems introduced to this point are typically driven by 

time independent forcing. A pattern forming system driven strictly by time depen-

dent forcing is a vertically oscillated open dish of fluid. Instability in this system is 

parametrically driven and results in the formation of surface waves. Michael Fara-

day [16] first (1831) investigated the instability leading to standing surface waves 

on the free surface of a fluid in a vertically oscillated container as the amplitude 

was increased (Faraday surface waves). Typically, surface waves in a Faraday wave 

experiment display a subharmonic time dependence, they respond at half the drive 

frequency. Thereby, a discrete time translation by a drive period inverts the fluid 

surface, rendering the surface periodic at twice the drive period. This subharmonic 

discrete time translation symmetry is a temporal form of inversion symmetry. If it is 

present, regular stripes or squares are observed at onset. 

In the absence of inversion symmetry hexagons and complex-ordered patterns 

[17] may be observed in Faraday surface waves. The inversion symmetry of time 

translation may be broken by inducing a harmonic response of the fluid to the vertical 

oscillations. Investigators have successfully induced harmonic fluid response through 

the use of very thin fluid layers, a viscoelastic fluid, or by using multiple judiciously 

chosen forcing frequencies. Regardless of the mechanism for breaking time translation 

symmetry, the effect is to allow resonant triads to form. As observed in the discussion 

of non-Boussinesq Rayleigh-Benard convection (Sec.1.1.1) these nonlinear interactions 

may result in the formation of hexagons. Additionally, it has recently been found that 

resonant triads can lead to the formation of complex-ordered patterns (Fig. 2) which 
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Figure 2: Twelve-fold symmetric quasicrystaline pattern in Faraday surface waves, 
reported by Gollub & Langer [2]. 

have the characteristics of non-trivial spatial structure described by a finite number 

of modes on interacting sublattices. Borrowing from condensed matter terminology, 

if these exotic patterns possess a unit cell which covers the plane they are called 

superlattices (i.e. square or hexagonal unit cell), while if the unit cell cannot fill the 

plane (i.e. pentagonal unit cell) they are called quasicrystals or quasipatterns. 

Study of complex-ordered states in pattern forming systems is a relatively recent 

topic. On the basis of quasicrystals in microscopic systems Malomed, Nepomnyashchi':i 

Tribelskii [18] first predicted macroscopic quasicrystals in spatially extended dis-

sipative systems in 1989. Using a viscoelastic fluid and a single oscillation frequency 

eightfold symmetric quasipatterns were first experimentally confirmed in 1992 by 

Christiansen, Alstrom & Levinsen [19]. Soon after (1993) Edwards & Fauve reported 
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[20] 12-fold quasipatterns when imposing two frequency forcing on a Faraday wave 

apparatus using a viscous fluid. Initial reports of superlattices were simultaneously 

made in different journals by Kudrolli, Pier & Gollub [21] and Arbell & Fineberg [22] 

in 1998. Both studies examined a viscous fluid in a Faraday wave apparatus subject 

to two frequency forcing over different parameter values. Later, Arbell & Fineberg 

[23] reported additional superlattices in the same system. Complex-ordered patterns 

have also been recently been reported in optical and ferrofluid [24] experiments. In the 

optical examples spatial symmetries in the quasipatterns and superlattices are usually 

imposed [25, 26, 17], but not always [27]. Mechanisms in the ferrofluid system are 

the same as in the Faraday surface waves. 

Resonant triads have been found to be the formation mechanism of all the pre-

viously discussed complex-ordered patterns. These resonant three wave interactions 

may occur between modes on the same sublattice, between modes on different sublat-

tices or between stimulated modes and other weakly damped (near critical) modes. 

In the various patterns there is a variety of these interactions, but they are almost 

always between three waves. The one exception occurs in the first experimental ob-

servation of macroscopic quasicrystals [19] in surface standing waves. In this case, the 

eightfold symmetric quasicrystals were attributed to the existence of four standing 

waves. Resonant triads, however, are the ubiquitous mechanism by which previously 

reported complex-ordered patterns form. 
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1.2 Effects of Time Dependent Modulation 

Introducing time dependent modulation to a system driven by time independent 

forcing can lead to a variety of unexpected changes. In the mechanical example of a 

planar pendulum, parametric modulation can be introduced by vertically oscillating 

the base. This driving alters the stability of solutions observed in the absence of 

oscillation. Without modulation there are two solutions: hanging which is stable and 

inverted which is unstable. Vertically oscillating the base can destabilize the hang-

ing solution. Conversely, the inverted solution can be stabilized by the modulations. 

By analogy with the pendulum, patterns in spatially extended systems subject to 

significant parametric modulation are expected to change stability. Time dependent 

modulation in pattern forming systems driven by time independent instabilities has 

been realized in a few hydrodynamic experiments. Results from these investigations 

have indicated that modulation shifts the onset of instability (either stabilizing or 

destabilizing the uniform state). However, several other predictions about the in-

fluence of time dependent modulation have remained unconfirmed due to physical 

limitations of the modulation realizations. 

1.3 Outline 

The primary focal point of this dissertation is the effects of time dependent modulation 

on a canonical pattern forming system driven by time independent forcing; Rayleigh-

Benard convection. The dissertation body is divided into four chapters. Chapter 2 

introduces the effects of parametric modulation by solving the mechanical system of a 

pendulum with an oscillating pivot point. Stability in the modulated system is shown 
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to change from that in the unmodulated case by closed form relations defining solution 

stability. Second, the relevant literature describing the effects of modulation on three 

pattern forming systems is reviewed. Experimental results in this literature have 

been constrained to a relatively narrow parameter range and unable to investigate 

some predictions. For the system considered in this dissertation experiments were not 

previously feasible and calculations are done to demonstrate how the development of 

compressed gas convection in the 1990s facilitates experimental results reported here. 

Chapter 3 details the experimental devices which were constructed to perform the 

laboratory investigations. Additionally, analysis tools and numerical methods are 

introduced. Chapter 4 reports experimental and numerical results directly relevant 

to addressing previously made predictions as well as considering the patterns present 

at onset. Chapter 5 details patterns found away from onset. Over relatively small 

values of the modulation parameters the experiment is dominated by the thermal 

driving, i.e., it is similar to classical Rayleigh-Benard. At relatively large modulation 

parameter values the modulations dominate the pattern formation. A parameter 

regime where flows from both driving types compete and coexist is found and detailed. 

When the two driving types have relatively equal influence several complex-ordered 

patterns are reported for the first time in a convection system. A mechanism for the 

formation of these patterns is identified and symmetries present in the system are 

found to play a key role in the formation of these patterns directly from the uniform 

state. Finally, directions for future studies are proposed. 

The stability calculations described here (Sec. 3.6.1) were performed by Jon 

Bougie and Jack Swift at the University of Texas - Austin. Extensive numerical work, 

including all simulations investigating patterns were performed by Werner Pesch and 
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Oliver Brausch at Physikalisches Institut der Universitat Bayreuth in Germany. The 

numerical methods used for pattern simulations are detailed in the Ph.D. dissertation 

of Oliver Brausch [28]. 
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CHAPTER 2 

Parametric Modulation 

Parametric modulation of a system can alter the stability of unmodulated states and 

result in novel behavior. A common mechanical example is a planar pendulum whose 

base is periodically oscillated in the vertical direction. When the base is stationary 

(no oscillations) the pendulum has two mathematical solutions: hanging and inverted. 

In the absence of driving only the hanging solution is physically observed. Friction is 

always present in physical systems resulting in any small perturbation of the hanging 

solution dying out as the pendulum returns to its steady state; this solution is said 

to be stable and attracting. By contrast, the other mathematical solution is unstable 

and repelling since any perturbation of the inverted state results in the pendulum 

falling over and eventually settling into the hanging position, thereby changing state. 

Introducing parametric forcing by vertically oscillating the pendulum base may alter 

the stability of both solutions. Depending on the amplitude and frequency of base 

oscillations the hanging solution may be destabilized while the inverted solution may 

be stabilized. 

Studies of the effect of time dependent modulation on hydrodynamic pattern for-

mation produced by a time independent instabilities began as a conversation between 

two University of California researchers [29]. In the early 1960s Harry Suhl was at 
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UC-San Diego and working on ferromagnetic resonance in the presence of parametric 

modulations [30, 31]. During a visit to UC-Berkeley he and a member of the Berkeley 

physics faculty (F. Reif) discussed the potential effects of modulation on hydrody-

namics. At that time Russell Donnelly was a young Assistant Professor at University 

of Chicago who was working on hydrodynamics in Taylor-Couette flow experiments. 

Suhl and Reif placed a call to Donnelly and within a few days they had begun the first 

set of modulated hydrodynamic experiments. In particular, Donnelly implemented 

parametric forcing by periodically modulating the inner cylinder rotation rate about 

nonzero mean while the outer cylinder was held fixed. After collecting data during the 

summer of 1962 Donnelly, Reif and Suhl reported [32] the initial results of these sem-

inal experiments. They concluded parametric modulation stabilized the fluid motion 

over the parameter range considered. Donnelly continued working on the problem 

and after performing more extensive experiments in the summer of 1963 he reported 

further results in 1964 [33] confirming the initial observations of stabilization. 

Limitations in accessible parameter range, complications in the theoretical de-

scription and difficulties in interpreting the initial modulated Taylor-Couette flow 

results stimulated investigation into other related hydrodynamic systems [34]. The 

experimental fluid has a limited response to the modulation of cylinder rotation rates 

given by the propagation of a viscous wave. This limitation restricts rotation mod-

ulated Taylor-Couette experimental trials to small modulation displacement ampli-

tudes and low modulation frequencies. Interpretation of experimental results also 

proved problematic. There were several disagreements between experimental and the-

oretical results reported in the literature, both quantitative and qualitative. These 
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disagreements were the basis for a number of additional investigations which even-

tually resolved the discrepancies and demonstrated some observations made in the 

initial experiments by Donnelly, Reif and Suhl [32] and Donnelly [33] had been mis-

interpreted. These problems stimulated a second line of modulated hydrodynamics 

inquiry where the temperature gradient in a Rayleigh-Benard convection cell was peri-

odically modulated about nonzero mean [34]. Modulation was achieved by oscillating 

either the bottom surface temperature or both the bottom and top surface tempera-

tures. While thermally modulated Rayleigh-Benard convection is more amenable to 

theoretical analysis it is also severely limited in dynamical parameter range since the 

fluid again is restricted in its response to modulations. In this case, the propagation 

of thermal waves are the limitation. 

A third line of modulated hydrodynamics inquiry that does not suffer from the 

same physical limitations as the two previous examples is Rayleigh-Benard convection 

in the presence of time-periodic acceleration (acceleration modulated Rayleigh-Benard 

convection). Theoretical and numerical [35] investigations of acceleration modulated 

Rayleigh-Benard have predicted stability changes similar to those of the previous 

two examples, but the lack of any experimental results has limited the number of 

investigations. 

This Chapter is intended to put the experimental and numerical results on accel-

eration modulated Rayleigh-Benard convection to be reported in Chapters 4 & 5 in 

context. Section 2.1 presents a stability analysis of a simple mechanical system, a 

planar pendulum. Parametric modulation is introduced by time-periodic oscillations 

of the pendulum base. As a result of the modulation, stability of the unmodulated 
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Figure 3: A pendulum with a vertically oscillating base. 

solutions is shown to change over parameter ranges. Closed form stability condi-

tions are derived for this relatively simple example. Section 2.2 reviews the existing 

literature on modulated hydrodynamics by examining three realizations that have 

been extensively studied: rotation modulated Taylor-Couette, thermally modulated 

Rayleigh-Berard convection, and acceleration modulated Rayleigh-Berard convec-

tion. Consistent predictions of the effects of modulation exist for all three cases, 

although experiments have only been performed for the first two examples. Order of 

magnitude calculations demonstrate why prior to this work no acceleration modulated 

Rayleigh-Berard convection experiments have been reported. 

2.1 Mechanical Analogy 

Insight into the possible effects of parametric modulation on hydrodynamic stability 

can be gained by considering the well-studied mechanical system of a planar pendulum 
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with an oscillating base (Fig. 3). In the absence of base oscillations (w = 0) the 

Lagrangian for the pendulum is 

1 
L(9) —

2
m1 2 O2  + mgl cos 0. ( 3 ) 

The corresponding equation of motion is given by 

	

+ 4, sin 0 = 0, 	 (4) 

with a single variable [0(t)] and w t; = gll. Eq. (4) has two solutions (eigenstates) 

where 9, = = 0: 0,, = 0 (hanging) and 0. = 7 (inverted). These eigenstates 

correspond to fixed points in phase space. Rewriting the equation of motion as two 

first order equations, 

0 = 	and 

	

= —w02  sin 0, 
	

( 5 ) 

allows the fixed point stability to be found from the eigenvalues A of the associated 

Jacobian, 

ae  — A 	ae 
ae 

4 a — A ae 

In general these eigenvalues will be complex. 

—A 	1 
(6) 

—w02  cos 0 —A 

The real parts indicate stability and 

det(J — AI) = 

the rate of approach while the imaginary components set the oscillatory frequencies. 

The sign of the real component determines stability; eigenstate is stable if R(A) < 0 

and unstable if 17(A) > 0. In phase space, R(A) < 0 corresponds to a flow tending 

towards a solution (associated state is attracting) while R(A) > 0 indicates the flow 

of states is moving away from a solution (associated state is repelling). The rate 
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Figure 4: Phase space plots for an oscillator (a) without dissipation and (b) with 
dissipation. 

at which the flow is moving towards a solution is given by the magnitude of R(A). 

Along the boundary between stable and unstable [R(A) = 0] perturbations do not 

grow or decay (fixed point is marginally stable). At 0,, = 0, $2(A) = 0 meaning in 

the absence of dissipation the pendulum is marginally stable, Fig. 4(b). Physically 

a small displacement of the hanging state will result in the pendulum harmonically 

oscillating about 0 = 0 with constant maximum amplitude. If friction were included 

the R(A) < 0 and 0. = 0 would be stable and attracting [Fig. 4(a)]. For the 

case without friction the oscillation frequency will given by the imaginary part of the 

Jacobian's eigenvalue [s(a) = w o ]. Conversely, at 0,, = 7r, R(\) > 0 and the pendulum 

is unstable. The associated fixed point is repelling. Any perturbation about 0,, = 7r 

results in the pendulum falling over while in phase space the flow will move away 

from this fixed point (0,, = +7, = 0), Fig. 4(b). 

Time-periodic vertical base oscillations cause the hanging (0*  = 0) solution to 

become unstable over a range of oscillation amplitude and frequency. Vertical oscil-

lations of the base can be included in the previous equation of motion by allowing 
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gravity to become time dependent [g(t) = y + a cos(wt)]. The equation of motion is 

then given by 

= —4[1 + e cos(wt)] sin 0, 	 (7 ) 

where e = cl is a nondimensional acceleration. Eq. (7) is a form of the Mathieu 

equation with the same fixed points as in the absence of modulation (w = 0): O. = 0 

and O. =- 7r. Parametrically forced systems typically display a response at half the 

drive frequency. With this in mind, fixed point stability can be investigated in the 

small angle approximation (sin 8 0) by assuming a solution, called an ansatz, and 

looking at the conditions under which the assumption is valid. Plugging the ansatz 

0(t) = eat  cos(V + 7r) into Eq. (7) and applying the technique of harmonic balance 

leads to the A 2  characteristic equation 

2 w 	_ 
a2 =—( 4 	+ 

   

wg €2/ 4_ (8) 

The boundary between stable and unstable parameters coincides with A 2  = 0. Thereby, 

marginal stability occurs when 

w 2 

c = co  = 2 1 
(9)  

Looking back at Eq. 8 indicates 

e < co  
0,, = 0 	is 

{

stable, 
(10) 

unstable, c > co  

as graphically shown in Fig. 5(a). 

Conversely, an oscillating base causes the inverted solution (0, = 7r) to become 

stable over a range of c and w. To use a small angle approximation transform the 
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Figure 5: Stability plots in terms of the nondimensional acceleration (c) versus the 
oscillation frequency c,) for (a) a hanging pendulum and (b) an inverted pendulum. 
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reference axes by letting 0 = 01  + 7r and plug into Eq. (7). The equation of motion 

becomes 

2 	w 
0 1   = 	(1 + E COS -

2
t) sin 01 . 

Notably the only change from the hanging case is the sign of the sin 0 1  coefficient. 

Using the previous ansatz, plugging into the equations of motion and pushing through 

the same calculation as for the hanging solution leads to the marginal stability con-

dition 
2 

E = €0  = 2( 	2  + 1). 	 (12) 
4wo  

The corresponding stability diagram is shown in Fig. 5(b). Notably, the only differ-

ence between the hanging and inverted calculations is the sign of wo throughout. 

While the planar pendulum is a highly simplified model it does bring out some 

interesting effects which might be expected in more complex systems subject to time-

periodic modulation. Stability of system states may be altered, causing either stabi-

lization or destabilization. Physically unobserved states, like the inverted pendulum, 

may be stable — even attracting over a range of parameters. Additionally, these stabil-

ity changes may lead to novel behaviors and unanticipated transitions between states 

that were not observed in the absence of modulation. 

2.2 Modulated Hydrodynamics 

Drawing an analogy between an unstable fluid and the inverted pendulum one might 

expect modulation of a fluid system would lead to stability changes and potentially, 

observation of new states. Initial experimental results for rotation modulated Taylor-

Couette flow [32, 33] indicated modulation stabilized fluid motion at some finite 
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(small) modulation and had diminishing effect with increasing modulation. Besides 

the fundamental questions of understanding the effects of modulation on hydrody-

namics these results had numerous potential applications in industrial processes. In 

manufacturing the rate of production can be limited by the rate at which laminar 

or smooth flow is maintained in the process, for example in paper production. The 

ability to improve stabilization of these processes so that higher flow rates could be 

attained while maintaining laminar or smooth flow could then allow production rates 

to be increased. As will be discussed in Sec. 2.2.1 interpretation of these early ex-

periments were questioned and lead to numerous other experimental, numerical and 

theoretical investigations. 

Due to the similarities between Taylor-Couette flow and Rayleigh-Benard convec-

tion instabilities a number of investigators chose the latter system in an effort to gain 

more definitive results [34]. The instability in Rayleigh-Benard convection is buoyancy 

driven and the initial investigations modulated this driving by imposing sinusoidal 

bounding plate temperature variation about nonzero mean. While the theoretical de-

scription in this case was more manageable the laboratory investigations suffered from 

physical limitations similar to those present in modulated Taylor-Couette flow. The 

limited physical response of the fluid to driving restricted accessible modulation pa-

rameters to small displacement amplitudes and low frequencies. At high frequency all 

modulation is confined to a very thin Stokes layer at the boundary [36]. Experimen-

tal results for this system appeared consistent with those observed in Taylor-Couette 

flow, but the limitations in dynamical range again restricted experiments to focusing 

on shifts in initial onset of fluid motion over a relatively small modulation range. 

In addition to thermal modulation stabilizing conduction other investigators [36, 
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37] predicted fundamental changes to the onset of convection. In the initial investi-

gations of thermally modulated Rayleigh-Benard it was assumed the onset planform 

would be parallel stripes. However, it was shown by Roppo, Davis, & Rosenblat [36] 

that the onset planform should actually be hexagons. Thermal modulations caused 

inversion symmetry to be broken over a range of parameters initial calculations indi-

cated should be experimentally observable. Initial experiments [38] did not observe 

the predicted hexagons and subsequent theoretical work [37] indicated the hexagons 

would be difficult to find then previously predicted [36]. Another set of experiments 

[39] did observe the hexagons, but additionally found interesting patterns composed 

of intermixed stripes and hexagons not previously considered. 

Buoyancy in a Rayleigh-Benard convection apparatus can also be modulated by 

vertically oscillating (shaking) the fluid layer. The oscillations result in time depen-

dent acceleration in the frame of the fluid. This type of driving force modulation 

is not limited in dynamical range as the previous two examples since the variation 

in acceleration is propagated vertically through the thin fluid layer at approximately 

the speed of sound. However, attaining dimensionless parameters significantly large 

enough to observe interesting behavior requires dimensional modulation amplitudes 

which were until recently prohibitively large. Thereby, only theoretical and numer-

ical investigations of acceleration modulated Rayleigh-Benard convection have been 

reported. 

The remainder of this chapter will review existing literature for all three men-

tioned forms of pattern forming systems with an additional parametric modulation: 
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rotation modulated Taylor-Couette flow, thermally modulated Rayleigh-Benard con-

vection and acceleration modulated Rayleigh-Benard convection. The initial theoret-

ical/numerical investigations as well as the experimental trials have focused primarily 

on establishing changes in stability near the initial onset of fluid motion while other 

interesting modulation effects have remained unconfirmed or simply unreported. 

There are other forms of modulated hydrodynamics which are currently being 

investigated. One example where preliminary results also indicate modulation has a 

stabilizing effect is a Rayleigh-Benard convection apparatus rotated about the vertical 

at a rate modulated about nonzero mean [40]. Other interesting examples include 

cases where the modulation is spatial instead of temporal. Examples of the latter 

case include Taylor-Couette flow apparatuses where the cylinder walls are spatially 

periodic [41]. For spatially modulated Taylor-Couette flow the modulation causes 

both destabilization and stabilization in comparison to the unmodulated flow that is 

qualitatively similar to the results for rotation modulated Taylor-Couette flow. 

2.2.1 Rotation Modulated Taylor-Couette Flow 

As discussed in the introduction modulated hydrodynamic studies began in the early 

1960s with reports of experimental work by Donnelly, Reif, & Suhl (1962) [32] and 

Donnelly (1964) [33]. Their seminal investigations examined flow stability in a Taylor-

Couette flow apparatus when the outer cylinder was held fixed and the inner cylin-

der rotated with periodic modulations about some mean rotation rate, S2 = c2 

cos(wt): mean rotation rate 0, modulation amplitude AQ, and modulation fre-

quency w. They reported modulation stabilized the fluid over a restricted w range and 

had little effect at relatively large or small w values. The stabilization was reported to 
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Table 1: Table of inner (52 1 ) and outer (Q 2 ) cylinder rotations considered by Carmi 
& Tustaniwskyj [1]. 

have a maximum at a dimensionless frequency of w ti  0(10), that decreased for larger 

or smaller b.). It was later shown that the criterion used to determine stability was 

somewhat arbitrary and lead to the qualitatively wrong result for a range of w. An 

article on modulated hydrodynamic by Homsy in 1974 [42] and a review of the subject 

by Davis [43] in 1976 called for more experimental results with improved dynamical 

range to guide the theoretical and numerical studies. Based on the interpretation 

confusion, Donnelly and coworkers decided to investigate the simplest example in 

a Taylor-Couette system where a single cylinder is periodically rotated about zero 

mean in an unbounded fluid. Predictions of Seminara & Hall (1976) indicated the 

flow would be destabilized, as was confirmed by Park, Barenghi, & Donnelly in 1980. 

Carmi & Tustaniwskyj [1] published a pair of theory papers addressing stability 

in four realizations of modulated hydrodynamics in a Taylor-Couette flow apparatus. 

The four cases are shown in Table 2.2.1 where cylinder rotation rates and modula-

tion amplitudes for the inner and outer cylinders are Q 1 , E l  and 522, E2, respectively. 

From their theoretical and numerical work Carmi & Tustaniwskyj concluded that 

flow would be stabilized by the first type of modulation (inner cylinder modulated, 

outer cylinder constant rotation) while all three of the other modulation forms should 

result in destabilization. Walsh & Donnelly reported experimental results in 1988 [44] 
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for the second system listed by Carmi & Tustaniwskyj. Their results were in qual-

itative disagreement with the predictions; modulation of the outer cylinder resulted 

in stabilization. Walsh & Donnelly also repeated the original modulated-rotation 

Taylor-Couette experiments [32, 33]. For modulation of the inner cylinder rotation 

rate about nonzero mean with the outer cylinder held fixed they found flow destabi-

lization using standard stability criteria. Qualitative disagreement on the second case 

of Carlin & Tustaniwskyj encouraged a reexamination of the predictions. Wu & Swift 

[45] used the approach of Hall [46] to consider both cases experimentally investigated 

by Walsh & Donnelly. Results from Wu & Swift's theoretical and numerical work 

were in qualitative agreement with the experiments, although quantitatively there 

were large differences. 

2.2.2 Thermally Modulated Rayleigh-Benard Convection 

Use of thermally modulated Rayleigh-Benard convection to study the influence of 

time-periodic modulation on hydrodynamics began with a paper published by Venezian 

in 1969 [34]. He was initially drawn to modulated Rayleigh-Benard convection since, 

in the absence of modulation, the Taylor-Couette flow instability (under the assump-

tions of axisymmetric disturbances and a narrow annulus) was known to be mathe-

matically analogous to the Rayleigh-Benard convection instability [42, 43] while the 

latter case was easier to describe theoretically. He considered modulation arising from 

sinusoidal temperature variation at both the top and bottom plates or just the bottom 

bounding plate. Assuming a layer of infinite lateral extent Venezian found [34] large 

w (w >> 1) would have little effect on the onset of convection while a stabilization 
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would occur [R > Re (w = 0)] at smaller w [w ti  0(1)]. He found maximum stabiliza-

tion occurred in the limit w —> 0. The experiments of Donnelly, Reif and Suhl [32] 

and Donnelly [33] which Venezian hoped to better understand through the thermal 

analog [34] also indicated little effect from modulation at w >> 1 and increasing 

stabilization at lower w. However, the experiments found maximum stabilization at 

w 0(1) with evidence for destabilization as w -+ 0. 

Soon after Venezian's results were reported Rosenblat & Herbert [47] addressed 

the low frequency limit by developing criteria which took into account the fluid being 

laterally finite to predict the shift in onset. In qualitative agreement with experi-

ments their results indicate maximum stabilization occurring at w ti  0(1). The first 

experimental results on thermally modulated Rayleigh-Benard convection were re-

ported by Finucane & Kelly in 1976 [48]. In particular, they studied air and found 

qualitative agreement with the predictions of Rosenblat & Herbert as well as the 

original Taylor-Couette flow experiments. Finucane & Kelly reported destabilization 

(R < Re ) for w < 3 and stabilization (R > Rc ) for the largest w reported (w 3.5). 

Unfortunately, the definition of stability was the source of numerous qualitative dis-

agreements and even resulted in both Homsy [42] and Davis [43] dedicating significant 

space to defining what stability for a modulated fluid means in their papers. 

Thermal modulation was confirmed to shift the onset of fluid motion. Niemela 

Donnelly [49] used the short response times of liquid Helium I coupled with heating 

and cooling of both top and bottom plates to extend the dynamical range of thermally 

modulated experiments. Their experimental findings confirmed the predictions of 

Rosenblat & Herbert [47]. For Pr = 0.49 experiments found maximum stabilization 

occurring at w 	10 while Rosenblat & Herbert's predictions indicated maximum 
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stabilization at w 7. However, they did not have much data at the larger frequencies 

and agreement was mostly qualitative. 

Additionally, thermal modulation has been predicted and confirmed to change the 

planform at onset. Using a perturbation approach Roppo, Davis, & Rosenblat [36] 

concluded modulation of a bounding plate temperature changes the bifurcation at on-

set from supercritical (forward) to subcritical (backwards). In a forward bifurcation 

the onset planform is parallel stripes whose amplitude grows continuously from zero. 

Alternatively, the stable onset planform for the backwards bifurcation is hexagons 

(see Sec. 1.1.1), whose amplitudes show a discontinuous jump at onset and display 

hysteresis. The mechanism for the formation of hexagons is resonant triads (see Sec. 

1.1.3). In the case of thermal modulation the Boussinesq symmetry is broken by a 

nonlinear conduction profile. Based on these observations, Roppo, Davis, & Rosen-

blat predicted hexagons would be stable over an experimentally observable range of 

R at onset. Soon after Ahlers, Hohenberg, & Liicke [38] reported experimental re-

sults for thermally modulated Rayleigh-Benard which failed to observe the predicted 

hexagons. Ahlers, Hohenberg, & Liicke concluded side wall influence might be mask-

ing the predicted onset of hexagons. Hohenberg & Swift [37] applied a Lorenz-type 

model to extend the perturbation results [36] to a wider parameter range. From the 

Lorenz model Hohenberg & Swift showed that Roppo, Davis, & Rosenblat had vastly 

overestimated (by a factor of 100) the range of observable hexagons. Hohenberg & 

Swift concluded that the bifurcation structure would not be experimentally observ-

able, but with careful selection if the physical parameters hexagons might be found. 

Experiments reported by Meyer, Cannell, & Ahlers [39] qualitatively agreed with 

both the theoretical predictions [36, 37] and quantitatively with those of Hohenberg 

31 



& Swift. Additionally, over a range of parameters where stripes and hexagons were 

expected to be simultaneously stable experiments indicated hexagons and stripes ex-

isted in mixed states. This was an unexpected result since the stripes and hexagons 

were not separated into distinct domains. Theoretical descriptions always assumed 

either stripes or hexagons, not both in mixed domains. 

Even with the improved w range achieved by Niemela & Donnelly [49] thermally 

modulated experimental studies are constrained to a relatively narrow parameter 

range as were the rotation modulated Taylor-Couette flow experiments. Due to these 

limitations previous modulated hydrodynamic experiments have been prevented from 

finding fluid motion at twice the drive frequency or investigating the region of pattern 

formation away from onset. 

2.2.3 Acceleration Modulated Rayleigh-Benard Convection 

Instead of thermal modulations to achieve a time dependent buoyancy force the ac-

celeration may be modulated by vertical oscillations of the fluid layer. In generalizing 

the simple pendulum (Sec. 2.1) to allow for base oscillations it was convenient to 

simply consider gravity to be modulated. A similar approach may be used to write 

the equations of motion for thermal convection with time dependent acceleration 

[g -4 g(t) = 95tat + a cos(wt)], 

V • v = 0 

1 

r 	

av 
V2v + i(1 + E cos cot)e — VP 

P
(v•Vv + —

Ot
) 

\720+Ri 
at 
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Figure 6: Sketch of stripes in a fluid layer driven out of equilibrium by both an 
imposed temperature difference and parametric oscillations. Temperature difference 
is defined in terms of the uniform top plate temperature T 1  and uniform bottom plate 
temperature T2 ( T2 > T1 ) by AT = T2 - T1 . Periodic oscillations are defined by a 
dimensionless acceleration c and a dimensionless angular frequency w through the 
driving c cos wt. The fluid layer depth is given by d. Shaded lines represent stripes 
that would be observed when viewing a parallel roll state by a shadowgraph from 
above. 
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These equations are valid in the Boussinesq approximation and have four dimension-

less parameters: R, Pr, c and w. Recall from Sec. 1.1.1, the Rayleigh number R and 

the Prandtl number Pr are sufficient to describe the state of a fluid in the absence of 

modulation. The additional modulation parameters are dimensionless acceleration € 

and dimensionless modulation frequency w. In describing the state of the system it 

is convenient to replace € by a dimensionless displacement amplitude, SFr = W2 . In 

terms of experimentally measurable quantities the state of the fluid with modulated 

acceleration may be described by: 

	

R 	ad3 0T9s ta t  Pr = 
LI 	 1£' 

	

SFr = 	8' 	and w = (-11 b./. d4g9tat 	' 
(14) 

These definitions are written in terms of dimensional displacement amplitude S' (cm), 

dimensional oscillation angular frequency w' (Hz), fluid layer depth d (cm), imposed 

temperature difference AT (°C), kinematic viscosity v, thermal diffusivity IC , thermal 

expansivity cy, and the constant gravitational component gstat• 

Theoretical and numerical results indicate acceleration modulation with heating 

from below stabilizes the conductive state over the majority of parameters. If the 

top bounding surface of the fluid is warmer than the bottom (heating from above) an 

analogy may be made to the hanging pendulum while if the bottom is warmer than 

the top (heating from below) an analogy to the inverted pendulum is appropriate. 

Using these analogies Gresho & Sani reported the first investigation of acceleration 

modulated Rayleigh-Benard convection in 1970 [35] for both heating from above and 

below. They solved a form of the Mathieu equation to examine convective onset. 

A similar equation was used in another comprehensive study by Ahlers, Hohenberg, 
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& Lucke in 1985 [50], though they derived the equation from a Lorenz model mode 

truncation of the appropriate Boussinesq equations [Eqs. (13)]. The current discus-

sion will be limited to the case of heating from below (numerical results for the case 

of heating from above can be found in the Ph.D. dissertation of Oliver Brausch [28]. 

Beginning from w = 0, Gresho & Sani reported changes in conduction stability for 

increasing w at constant SFr. Increasing w from w = 0 initially results in stabiliza-

tion of conduction (R e  > 1708). As w increases conduction is initially increasingly 

stabilized. At sufficiently large w another instability precedes the previous one and 

a maximum in conduction stability will occur. For further increases in w stabiliza-

tion will begin to decrease due to this second instability. Corresponding conduction 

stabilization can reach several times the unmodulated Re . 

The types of predicted flows display different spatial and temporal characteristics. 

Three possible types of fluid motion were predicted: harmonic, subharmonic, and 

relaxation oscillations. Harmonic flow is the first instability at smaller modulation 

parameters and is expected to display time dependence synchronous with the drive 

frequency w. In harmonic flow the velocity field would briefly reverse, although on 

average the fluid would overturn. The heat transport was predicted to be dimin-

ished for harmonic convection in comparison with the unmodulated case (w = 0). 

Harmonic motion is expected at lower values of SFr and w. Increasing SFr or w 

from the unmodulated case conduction was found to be increasingly stabilized over 

the harmonic parameter range. The corresponding wave numbers at harmonic onset 

are relatively insensitive to SFr and w, except as the onset of subharmonic flows is 

approached. As these parameters are increased conduction eventually loses stability 

to fluid motion displaying subharmonic response, this is the second instability which 
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precedes the harmonic instability at larger modulation parameters and the flow is 

then expected to be periodic at 2T. Over a drive cycle subharmonic velocity fields 

reverse about zero mean; there is no net motion of the fluid. Correspondingly the 

heat transport of subharmonic flows is dramatically reduced in comparison with the 

w = 0 case. Wave numbers of subharmonic states are strongly dependent on the 

modulation parameters (SFr and w). Based on the significant difference between 

harmonic and subharmonic wave numbers Gresho & Sani argued that there would be 

an abrupt change as the system passed from harmonic to subharmonic fluid motion. 

The third type of temporal response is relaxation oscillations. These were predicted 

to occur beyond the subharmonic region at relatively very large SFr and w. Temporal 

response of the relaxation oscillations was predicted to be on the 0(10w), displaying 

explosive bursts. 

The results of Gresho & Sani were qualitatively confirmed by Biringen & Peltier in 

1990 [51] who included three spatial dimensions in a numerical study. Clever, Schu-

bert, & Busse [52, 53] also reported numerical solutions of the Oberbeck-Boussinesq 

[Eqs. (13)] in qualitative agreement with the other investigations. Clever, Schubert, 

& Busse extended the considered parameter range to include 1x10 -7  < SFr < 1, 

100 < w < 3000 and 0.71 < Pr < 50. Gresho & Sani considered only Pr = 7, while 

Biringen & Peltier reported results for Pr = 0.71 and Pr = 7.1. Prandtl numbers for 

some common fluids are: Pr = 0.71 (air), Pr = 0.93 (compressed Carbon-Dioxide), 

Pr = 7 (water), and Pr 50 (Silicon oil). The constant component of the effective 

gravitational acceleration was shown by Biringen and Peltier not to qualitatively al-

ter the stability results. Considering the one-g and zero-g cases they found general 

qualitative agreement and quantitative agreement at large modulation amplitudes. 
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The various theoretical and numerical studies [35, 50, 51, 52, 53] of acceleration 

modulated Rayleigh-Benard convection make several consistent predictions. First, 

moving away from the unmodulated limit conduction is expected to be stabilized 

with increasing 8Fr and w, this stabilization may be significant. Second, conduction 

will lose stability to convection displaying harmonic time dependence and patterns 

of a characteristic wave number (e) over a range of SFr and w. For large enough 

values of SFr and w the degree of stabilization a subharmonic instability will precede 

the harmonic instability and R, will begin to decrease with increasing modulation 

parameters. Conduction will now lose stability to convection displaying a subhar-

monic time dependence forming patterns of a distinct characteristic wave number 

qs that is larger than the harmonic , ges  > qH. While Gresho & Sani predicted q es 

 was independent of the modulation parameters the more detailed analysis of Clever, 

Schubert, & Busse found qcs  was sensitively dependent on w. The dependence of Tes' 

on the modulations parameters was not reported by Biringen & Peltier. 

Physical limitations associated with the standard fluids for investigating Rayleigh-

Benard convection have excluded any experimental verifications of the various pre-

dictions. To confirm the predictions requires sufficient dynamical range to reach the 

interesting parameters and a reliable means of measurement. The feasibility of per-

forming successful modulated-acceleration experiments is extremely sensitive to the 

fluid used. Two commonly used fluids are water and Silicon oil. For both of these 

Fr ti  0(1 x 10-9) with typical fluid layer depths d 0(1) cm. In order to reach 

subharmonic convection at w = 1000 Gresho & Sani [35] predicted SFr ti  10 -5  and 

R ti 0(104 ) would be required. Eqs. (14) indicate this would require 0(1) Hz 
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and S' — 0(10 4 ) cm. The prohibitively large a' is the reason for a lack of experimen-

tal verification of the various predictions for acceleration modulated Rayleigh-Benard 

convection. 

As discussed in Chapter 1 compressed gas convection has been refined over the 

past ten years. Shadowgraphy provides a reliable qualitative and quantitative visual-

ization technique for compressed gases. A commonly used gas like CO 2  under 34 bar 

has Fr ti  0(1 x 10-5) and Pr — 0(1). To reach subharmonic convection at w = 100 

requires dimensionless displacement magnitudes of SFr — 4 x 10 -4 . Compressed gas 

convection typically occurs in very thin layers where d ti  0(6 x 10 -2) cm. Inverting 

Eqs. (14) reveals that reaching subharmonic convection in compressed CO 2  would re-

quire f' 0(10) Hz and a' — 0(1) cm, both of which are attainable in the laboratory. 

Thereby, using compressed gases it should be possible to experimentally investigate 

many of the predictions made for acceleration modulated Rayleigh-Benard convection 

including stabilization, the existence of harmonic and subharmonic convection as well 

as the transition between harmonic and subharmonic flows. 
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CHAPTER 3 

Laboratory 

To experimentally investigate acceleration modulated Rayleigh-Benard problem a 

convection cell is attached to a mechanical shaking device. Design of the convec-

tion cell is based on the one described by de Bruyn et al. [54], but shares features 

with the original apparatus for compressed gas convection investigated by Croquette 

[55]. Vertically oscillating the convection cell with a hydraulic shaker produces the 

time dependent acceleration in the frame of the fluid layer. This apparatus may be 

thought of as a hybrid of two standard devices in pattern formation studies: Rayleigh-

Benard convection and Faraday waves, although there is no free fluid surface. Studies 

with both of these devices have produced a substantial body of literature and lead to 

numerous design refinements that enable us to rapidly and effectively construct our 

apparatus. Our experiment will be described in terms of four subsystems: a convec-

tion cell, a shaking device, pattern visualization and computer control of experimental 

conditions as well as data acquisition/analysis. An overview of the complete device 

is shown schematically in Fig. 7. 

Numerical solutions of the Oberbeck-Boussinesq equations [Eqs. (13)] are used to 

verify and augment the experimental results. A pseudo-spectral method is employed 

[56, 28] in solving Eqs. (13). The numerical code used in these solutions is generalized 
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Figure 7: Overview of the experimental configuration. 
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from one developed and extensively tested on classical (unshaken) Rayleigh-Benard 

convection. 

3.1 Convection Cell 

Design of the convection cell [Fig. 8] attempts to balance apparatus simplicity and 

reliability under vertical oscillations with lateral size of the cell. In the convection 

cell configuration employed here cooling water removes heat from the experiment by 

passing from an external water bath over the pressure vessel lid which has an inner 

diameter below which is the upper surface of a 2.54 cm thick sapphire crystal. The 

crystal acts as a window into the cell with the upper surface exposed to water at 

1 bar while the lower surface is in contact with the fluid at pressures between 30 

bar and 35 bar. The lower sapphire surface is the top plate of the convection cell. 

For uniformity the top plate needs to be flat and crystal deformations due to large 

pressure differentials or aspect ratios limit our investigations to pressures P < 50 bar 

and F < 50. Lateral boundaries for the cell are provided by a cylindrical stack of 

filter paper typically of 3.8 cm inner diameter and 5.5 cm outer diameter, although 

the outer diameter may be varied to alter the sidewall influence. These side-walls rest 

on the gold-coated face of a cylindrical aluminum block 0.6 cm thick and 5.08 cm in 

diameter (Fig. 9). It provides a reflective surface (mirror) for the imaging technique 

and the bottom surface of the cell. Attached to the bottom of the aluminum block 

is a resistive heating pad for warming the bottom plate and the principal source of 

temperature control. 

This convection cell sits in a cylindrical aluminum can 6.75 cm high, 6.93 cm inner 
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Figure 9: Aluminum mirror that acts as the bottom surface of the convection cell 
(see SIDE view). 

diameter and 8.95 cm outer diameter. A 1.016 cm thick, 8.95 cm in outer diameter, 

4.11 cm inner diameter cylindrical aluminum plate serves as the upper lid of the 

pressurized vessel [Fig. 10]. Four Newport 1/4-80 Fine Adjustment Screws (AJS-2) 

with NPT pressure fittings pass through the bottom of the can, acting as a kinetic 

mirror mount. Three of the screws are arranged in a centered equilateral triangle of 

11.43 cm side length serving as kinematic points used to level the mirror with respect 

to the bottom crystal surface, while the fourth screw passes through the center and 

pulls down on the mirror against the kinematic mount to ensure the mirror does not 

move when the apparatus is oscillated. Pressure seals for the four screws use Viton 

0-rings to avoid CO 2  penetration of the 0-rings would result in a loss of effective 

seal as bubbles in the 0-ring would form. Under pressure the sapphire crystal presses 

against a size 031 Viton V-75 0-ring seated in the bottom of the upper retaining 

plate. The plate is attached by 8 evenly spaced pairs of 1.5 cm-long, 4-40 hex-ended 
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Figure 10: Dimensions of the pressure vessel top retaining plate. Upper surface of 
the sapphire crystal is slanted and must be aligned to seat into the top plate. 

screws 1.5 cm apart. A size 040 Buna N-70 0-ring is seated in the upper plate. Dow 

Corning high vacuum grease is applied to both of these seals and all of the screws are 

replaced each time the can is opened. 

There are four NPT pressure fittings passing through the can side. The two lower 

fittings are used for sensing and controlling the temperature of the mirror and will 

be covered in the control section. The two upper fittings are used to fill the vessel 

with 99.99% pure CO 2  from a pressurized reservoir tank. A Victor model SR 4F 

compressed gas regulator attached to the tank allows the external pressure to be 
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roughly set and the pressure vessel to be gradually filled. As CO 2  fills the can it seeps 

through the porous filter paper to fill the convection cell. 

3.2 Vertical Oscillations 

Two separate vertical oscillation configurations are employed in attaining the results 

detailed in this dissertation. Both set-ups employ the same hydraulic pump to supply 

the mechanical shaking devices with pressurized hydraulic fluid. The pump circulates 

Premium Antiwear 46 weight hydraulic fluid at 1700 PSI. Team Vibration Testing 

Equipment manufactured the mechanical shaking devices (shakers). These shakers 

use a servo valve to regulate the hydraulic pressure and thereby mechanically dis-

place a driving rod. The rod is coupled to the convection cell bottom, supplying the 

vertical oscillations and time dependent acceleration in the frame of the fluid layer. 

Restrictions on the attainable accelerations are imposed by the maximum hydraulic 

pressure through the cross-sectional surface area of the driving rod and the mass of 

the convection cell. To maintain maximal acceleration range it is necessary to restrict 

convection cell mass as well as minimize cross-sectional driving rod area. The bulk 

of these results are attained with the first mechanical shaker (Fig. 11). Maximum 

displacement for this configuration is S' ti 2 cm. Recoil damping is provided by a 

stack of Lead coated plywood sheets which rest on four radial F/FR13 truck tire 

tubes. The shaker is mounted directly to the plywood sheets by four bolts which 

pass through the stack. Towards each of the four corners of the plywood stack an 

additional bolt is tightened to further secure the sheets and reduce spurious vibra-

tions. The range of accessible frequencies is 0 < w' < 20 Hz. Due to the response 
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Figure 11: Sketch of the first mechanical shaking device. 

of the servo valve this shaker is limited to sinusoidal oscillations. Attached directly 

to the drive rod is an aluminum mounting bracket [Fig. 12]. Three hex-bolts attach 

1.27 cm diameter 11.43 cm long circular legs to the mounting bracket. The legs are 

attached to the bottom of the convection cell pressurized can allowing access to the 

leveling screws. The circular drive rod may rotate and displays lateral vibrations of 

±(1% — 2%) at typical displacement amplitudes (6') , both of which lead to spurious 

experimental effects that the construction of the second oscillation configuration is 

designed to address. 

The second experimental shaking configuration (Fig. 13) has the advantages of 

increased stroke, improved response to driving waveform, elimination of drive shaft 

rotations and reduction of the lateral accelerations due to vibrations. Maximum 

stroke with the second mechanical shaker is 15.25 cm. In this case the shaker is 

bolted to an aluminum plate and the bottom of an open-ended bulk container (box) 
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Figure 12: First shaker mounting bracket connecting the convection cell to the driving 
rod. View from the side (a) and from above (b). 

constructed of 12 and 13 gauge steel. The box is filled with 	1050 lbs. of sand for 

ballast and rests on 96 tennis balls for vibration damping. Instead of connecting the 

drive rod directly to the convection cell mounting bracket as in the first configuration, 

the drive rod in the second set-up is attached to a rectangular slide [Fig. 13] which 

passes through an air-bearing. A connecting rod with an embedded bearing (Fig. 

14) mounts the drive rod to the rectangular slide and allows for slight misalignments 

between the two rods. 

NewWay Bearings supplied the air-bearing and slide that prevents the drive rod 

from rotating and reduces the lateral vibrations dramatically. Pressurized air for the 

bearing comes from the building supply which passes through two Whatman-Balston 

Air Products air and moisture filters. The grade DX first filter and grade BX second 

filter together remove 99.99% of particles and mist from the air stream to protect the 

air bearing which is sensitive to water and oil. A regulator attached downstream of 
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Figure 13: Sketch of the second mechanical shaking device. This shaker has improved 
dynamical range over the first configuration and employs a rectangular slide on the 
driving rod to eliminate driving rod rotations and reduce lateral vibrations. 
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Figure 14: Second shaker mounting bracket connecting the driving rod to the rectan-
gular slide and the swivel bearing used. 
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the second filter restricts the wall pressure to the 60 PSI called for in the bearing 

specification. A 1/16 in. clear Swaglock tube connects the filters to the bearing. 

Aligning the air-bearing relative to the vertical axis and isolating it from external 

vibrations are addressed by the mounting apparatus shown in Fig. 15. The air-bearing 

rests on a alignment plate suspended from three springs. A triangular mount allows 

leveling of the plate and bearing relative to the vertical axis by adjustment of three 

screws. While these mounting points in principle allow vibrations to be transmitted 

to the leveling plate, the springs damp out some of these vibrations and in practice 

the transmitted effects are minimal and do not seem to have any significant effect on 

the experiment. 

3.3 Imaging Convection 

Fluid flows are imaged using the technique of shadowgraphy [Fig. 16]. This well-

established [54, 57] imaging method is particularly attractive since it relies only on 

variations in the index of refraction to visualize the fluids temperature field. Light 

from a point source is reflected by a beam splitter through a collimator lens. The 

now parallel light passes through the convection cell sapphire window and fluid layer 

to be reflected by the gold-plated surface of the aluminum mirror. In turn, this light 

passes back through the sapphire crystal and collimator lens, past the beam splitter, 

through the camera lens and is incident on the CCD array. Shadowgraphy takes 

advantage of the fluid's index of refraction temperature dependence which causes 

the fluid temperature variations to act as lenses. The index of refraction is lower 

for warmer fluid causing upflowing columns to have lower indexes of refraction while 
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Figure 15: Alignment table for the square air-bearing which is attached to the align-
ment plate by angle brackets and suspended by springs. The springs act as vibration 
damping. 
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downflowing columns have higher indexes. These variation translate into light being 

focused towards regions of higher index of refraction, cooler downflowing columns. 

By varying the camera lens imaging plane relative to the focal plane [Fig. 16] the 

light and dark areas may be switched. For the patterns reported in this dissertation 

light areas correspond to cold columns and downflows while dark areas correspond to 

upflows. Using compressed gases greatly enhances the sensitivity of the shadowgraph 

[55] since the refractive index is reinforced and the contrast is enhanced due the 

very thin layers which may be used. Shadowgraph contrast is proportional to the 

second spatial derivative. For the current purposes this qualitative geometric optics 

description is sufficient, although it should be mentioned that by including physical 

optics this method may be made quantitative [54]. 

Optical components used in producing the shadowgraph are commonly available. 

Illumination comes from a 30 watt Quartz Halogen source through a 4.8 mm diameter 

fiber optic which yields approximately 4000 foot candles at 15.25 cm. A Melles Griot 

beam splitter redirects source light through a collimator lens. Since the collimator 

lens has a 50 cm focal length the point light source is positioned at the focal distance 

from the collimator lens mid-plane. A Sonic XC77 CCD Camera Module with an 

appropriate 35 mm lens attached records the shadowgraph. Images are acquired by 

shuttering the camera to ensure the flow is visualized at the same phase of the drive. 
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Figure 16: Schematic of the shadowgraph configuration. The collimator lens has a 
focal length f . The camera lens is focused on the imaging plane, a distance Az further 
from camera than the focal plane. Shades in the presented experimental images could 
be reversed by changing the imaging plane to a distance —Az; closer to the camera 
than the focal plane. 
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3.4 Computer Control 

Computers are used to measure and regulate experimental quantities, to record im-

ages, dynamically analyze results and autonomously search the dimensionless pa-

rameter space. The important physical quantities of T, T2 and pressure were dy-

namically controlled using linear Proportional-Integral-Derivative (PID) control al-

gorithms. These were implemented on surplused 386 and 486 computers utilizing 

National Instrument LabPC+ data acquisition boards and a series of analog circuits. 

Computer code to record images as detailed in the previous section was written in 

C by Todd Meyrath and controlled by Linux shell scripts written to automate the 

experiment. Analysis of the images was performed by a series of functions written in 

the MatLab environment and dynamically called from the controlling shell scripts. 

Based on the results from the analysis and predefined conditions the controlling bash 

scripts would change physical quantities of the experiment, record data and again 

start analysis. 

3.4.1 Temperature 

The two most important temperatures to stabilizing the experiment are the mid-plane 

fluid temperature T and AT. All four of the system parameters (6 Fr , w , R and Pr) 

depend on these two temperatures. The Rayleigh number is linearly proportional to 

the temperature difference, R AT, while all of the parameters depend on T through 

1/ and oz. Both AT and T are defined in terms of T1  and T2: AT = T2 - Ti and 

T = (T1  + T2 )/2. Since the sapphire crystal is in contact with a water bath changes 

in T1  occur on a long time scale while T2 may change on a much shorter scale. Due 
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Figure 17: Overview of the temperature control system which controls both AT and 
T using linear PID algorithms. 

to this separation of response scales AT is controlled primarily by changing T2 while 

the water bath is used to more slowly regulate T i  and hence control T. Temperatures 

are measured by recording the resistance in 100 KQ thermistors and then converting 

the measured resistance to temperature by matching calibration curves. The top 

thermistor is located in a hole on the side of the top retaining plate while the bottom 

one is placed in the bulk of the mirror. Heat sink compound is used in both cases to 

maintain thermal contact between the thermistors and the surrounding material. 

The temperature control system is shown schematically in Fig. 17. A National 

Instruments LabPC+ data acquisition board installed in a 386 computer running 

Linux (Slackware - kernel 2.0.28) controls AT by T2. The control algorithm uses 

outer and inner control loops to enhance speed, which turns out to be crucial to 
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maintaining reasonable temperature control. One step in the outer control loop be-

gins with T_ctrl.c opening the switch connected to the top thermistor. The control 

program then instructs the multi-meter to take a resistance reading and opens the 

computer's serial line where the multi-meter is attached. After reading the serial line 

the computer closes the line and opens all switches. The measured resistance (R 1 ) is 

then converted to the top plate temperature (T 1 ) by matching to a calibration curve. 

Now that T1  is known the inner control loop begins with the closing of the switch 

to the bottom plate temperature. Using the same process as described for the top 

thermistor the bottom temperature is calculated after which all devices are closed and 

switches opened. From T1  and T2 the error in AT is calculated. This error is used in 

a linear proportional+derivative (PD) control scheme to calculate a new current to 

be sent to the bottom plate heater. 

Since digital to analog (DAC) channels on the LabPC+ board are limited to a 

resolution of 4096 (2 12 ) steps, two DAC channels were used to enhance resolution. 

Using one channel for coarse grain control and the other for fine grain control provides 

224  control steps. After calculating the appropriate current the DAC lines send out the 

voltages to the summing circuit (Fig. 18). Operational amplifiers scale the voltages 

on the DAC lines: DACO is divided by one and DAC1 is divided by 1000. These are 

then added together by a third operational amplifier resulting in voltages from 0 to 

10 Volts with a resolution of 0.00239 mV. Since the T1  changes over a much longer 

time scale then T2 the inner control loop will repeat the control of T2 multiple times 

(typically between 5 and 10) before ending and moving into the outer loop to measure 

T1  again. 

Simultaneously another linux box is used to regulate T by PID control of the water 
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Figure 18: Circuit used in computer control of the bottom plate temperature. It 
accepts input from two computer channels (DACO and DAC1), scales the applied 
voltage to a fine and a coarse scale resulting in much higher resolution than would be 
achievable with a single channel. Maximum output voltage is 10 V with a resolution 
of 0.00239 mV. 
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bath. The computer controlling AT streams T 1  and T2 to files which are then read by 

the other computers being used for control. Periodically (usually every 60 seconds) 

the computer controlling T will calculate the current error in T. This error is used in 

a PID algorithm to calculate the new water bath temperature which is loaded into the 

bath by a voltage imposed on the controller. Imposed voltage of 10 mV corresponds 

to a 1 C; thereby, 300 mV input results in a bath temperature of 30 C. Control 

voltage is sent to the bath by a digitally programmable circuit (Fig. 19). A +5 V 

reference voltage (Analog Devices REF-02) is multiplied by the gain across the first 

operational amplifier in Fig. 19 which is inverted and scaled. Circuit output voltage 

is controlled by altering the gain across the first operational amplifier. Resistance 

in this gain coefficient is computer controlled by digitally programming two Digital 

Potentiometers (Analog Devices AD7376) using BASH and GAWK scripts running 

on the bath control computer. Each Digital Potentiometer has 128 (2 7 ) resistance 

steps; providing 256 control steps for the circuit shown in Fig. 19. For the anticipated 

range of 15.0 C to 30.0 C this corresponds to control steps of 0.06 C. 

Using the algorithms provided in this subsection reasonable control of AT and T 

are achieved. Relatively short response times of the bottom mirror are used to control 

AT with a control algorithm with 0.6 seconds between steps. The described control 

algorithm has an accuracy of AT < AT„ t  + 0.008 C. Transients associated with small 

changes in AT are relatively short, 0(1) minute for a change of 1 C. Response of the 

water bath used to control T is significantly slower. The water bath control algorithm 

typically performs a control step once every 60 seconds. This control speed is more 

rapid than the bath can usually respond, but helps keep T constant once the mean 

temperature has stabilized. Control of AT is important for most experiments, while 
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Figure 19: Circuit diagram for the programmable circuit used in controlling the 
water bath temperature. The boxed numbers are the pin placements for associated 
connections. Input voltage is supplied by the 5 Volt reference chip. Circuit output 
voltage ranges from 150 mV to 300 mV depending on the gain present from the 
operational amplifier. Gain is computer controlled by digitally programming values 
into two variable resistors providing resolution of 0.5859 mV over the voltage range. 
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control of T is only necessary for those experiments where it is crucial that one or 

both of the modulation parameters (6Fr and w) are held fixed. 

3.4.2 Pressure 

A pressurized gas canister supplies CO 2  to the experiment which is connected to 

a downstream pressure sensor and a gas reservoir used for finer resolution pressure 

control. An overview of the gas supply and regulation system is shown schematically 

in Fig. 20. A pressurized tank is filled with 99.99% pure CO 2  at a nominal tank 

pressure of 830 PSI. This supply is controlled by a Victor model SR 4F regulator 

rated to 3000 PSI. The regulator may be used to roughly set the convection cell 

pressure. Downstream from the convection cell is a SensorTec model TJE/3883- 

12TJA pressure sensor rated to 1000 PSI. Connected downstream from the pressure 

sensor is a cylindrical aluminum container 5.08 cm in diameter and 10.16 cm in height 

with a resistive heating pad attached to the bottom. Downstream from the reservoir 

is a Swaglock Nupro plug valve rated to 206 bar (at 21.1C) that allows the convection 

cell to be bled or purged. Clear 0.3 cm tube is used to connect all of these elements 

with Swaglock fittings on all mounts. Two NPT pressure fittings pass through the 

upper part of the containment vessel allowing CO 2  to pass through the pressurized 

can. 

Pressure in the convection cell can be regulated by supplying current to the heating 

pad, increasing the temperature inside the reservoir, expanding the CO 2  and increas-

ing the pressure. Prior to starting an experimental run the regulator and shut-off 

valve are used to set the pressure in the containment vessel to a value 1 to 4 PSI 
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Figure 20: Schematic of the CO 2  supply arid pressure control system. Pressurized 
99.99 % pure CO 2  is supplied by a tank at 830 PSI. Cell pressure is measured by a 
SensorTec sensor and fine pressure control is provided by regulating heat supplied to 
a downstream gas ballast. 
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below the desired setting. A computer program (P_ctrl.c) then performs some num-

ber of sequential reads of the pressure sensor and uses the average value to find the 

pressure error. This error is fed through a linear PID control routine which calculates 

the current that should go to the heating pad until the next control step. Typically, 

the number of sequential reads is between 100 and 500 while the typical control step 

is every 1 or 2 minutes. 

3.5 Analysis 

Laboratory data is dynamically analyzed in concert with the experiment to provide 

the system location in the nondimensional parameter space while the experiment is 

operating. Calculating the four dimensionless parameters [Eqs. (14)] requires know-

ing the fluid's physical characteristics v, k, a as well as the oscillation frequency 

w' and oscillation displacement amplitude 6'. Fluid properties are derived from the 

recorded data of T, P and d by a computer code developed in Guenter Ahler's group 

at the University of California-Santa Barbara. This code has been developed and 

tested over an extended period and can reliably supply a large number of physical 

characteristics for CO 2 . The dimensioned modulation quantities 6' and w' are found 

from the drive signal recorded at the corresponding data point. Typically, the signal 

has 16384 points recorded at 100 Hz. Drive signal recording begins when the CCD 

camera begins acquiring images. After the drive signal is recorded the voltage from an 

accelerometer is measured. The accelerometer is bolted to the convection cell mount-

ing bracket and provides another source for the drive signal from the instantaneous 

acceleration, typically recorded at 1000 Hz. Power spectra of these signals computed 
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in the MatLab environment yield 6' in Volts and w' in Hz. From calibrated data 6' 

is converted from Volts to cm by a multiplicative conversion factor. Once v, n, a, 6', 

& w' are found they are plugged into Eqs. (14) with the known quantities of g stat  

d to produce the data point in the dimensionless four parameter space. 

Due to the location of the top thermistor the finite conductivity of the sapphire 

window introduces a relatively small correction into the measured value of T 1 . Since 

the bottom thermistor is located inside the aluminum mirror the measured T2 is a 

reasonably accurate value. However, the top thermistor being located in the top 

retaining plate (Fig. 8) requires a correction to the measured T 1  to get accurate 

values for T & T. To approximate the correction to T 1  the thermal conductivity 

of the CO 2  and the sapphire crystal can be taken into account through the thermal 

current, 

las 	 —  s" gas — 
agas

AT 	
sap 

AT sap, 
 

(15) 

where k is the coefficient of thermal conductivity, d is the thickness of the material, 

and AT is the temperature difference across the material. The subscripts gas and sap 

indicate the material; CO 2  and sapphire, respectively. Using values from the CRC 

tables [58] yields, 

AT = AT' [1 
1 

and T T i  + 1  
2 

[ AT' 
, 	(16) 

(1 + 766.47d) [(1 + 766.47d) 

where AT' is the measured temperature difference, T' is the measured mid plane 

temperature, and d is the fluid layer depth. 

Quantities and techniques used to analyze patterns throughout this dissertation 

are introduced through the characterization of a computer-generated pattern (Fig. 
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Figure 21: Computer generated patterns u(x, y) = cos qx (a) and u(x, y) = cos 2.9qy 
(b) are summed to produce a pattern (c) composed of wave numbers typical of exper-
imental images. All these patterns are 480 by 480 pixels with a circular mask applied 
to (c) to simulate the experimental lateral boundaries. 
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21). Like the majority of the experimental images to be described the computer gen-

erated pattern is defined on a 480 by 480 point grid. In the experimental images this 

grid occurs from digitizing the continuous image. The computer generated pattern 

is defined by u(x, y) = cos qx x + cos qy y, where u(x, y) is the pattern intensity at the 

Cartesian pair (x,y), qx  is the horizontal wave number and qy  is the vertical wave 

number. To facilitate comparison with experiments qx  and qy  are chosen to have a 

ratio representative of typically observed patterns (qy /qx  = 2.9). Analysis of the pat-

terns begins with calculation of the mean (< u >) and variance [var(u)] of pattern 

intensities defined by 

n m 

(u) = 
- 

1 
uij 	and 	 (17) 

TIM, . 	. 
i --=1 2-=- 1 

n m 

i 

1

m  
var(u) = n 
	

— < u >) 2 , 	 (18) 
. ..7 ,_-.1. 	=-1 

respectively. Since the computer-generated pattern is symmetric about zero < u 

0. 

Pattern characteristics can often be well described in the wave number domain. 

To reduce the aliasing (an effect of working with a finite pattern) a radial Hanning 

mask is applied to the image. The family of Hanning masks [H-  (r)] are defined by, 

H (r) = 
{.- [1 + cos(7r/r 0 )], r 5 ro 

 0, 	r > ro  
(19) 

where r is the radius from the image mid point and r 0  determines the radius at which 

the pattern tapers off. For these investigations r 0  = 240. The two-dimensional spatial 

Fourier Transform is performed on the masked image. The Transform provides the 

relative phase angles and magnitude squared (power spectrum) of the image in wave 
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Figure 22: Power spectrum for the computer generated pattern in Fig. 21(c). (a) 
Two-dimensional spatial power spectrum can be represented in terms of (h) the radial 
power [g(q)] and angular power populations (c & d). Angular power is computed over 
wave number bands. 
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number space. Populated lattice sites indicate the wave numbers present in the real 

space pattern. Each of the four power spectrum corners is a point of zero wave 

number. The power spectrum is divided into four square panels, each of which is 

reflected so zero wave number occurs at the power spectrum center. Wave vectors 

(modes) of the same magnitude then lie on a circle centered about the power spectra 

center. The example patterns' power spectra [Fig. 22(b)] displays four discrete peaks, 

divided into two pairs. The inner pair of peaks have wave numbers of T r  and the 

outer pair of peaks has wave numbers of q y . For the example pattern where only a 

few discrete modes are populated the simplest method for determining the patterns' 

spectral structure is to calculate the wave numbers and angles for each populated 

mode directly. 

However, experimental patterns often contain various defects that result in do-

mains of multiple orientations and a distribution of wave numbers. The wave number 

over a given range may be defined by the weighted average populated wave num-

ber over a band. Attaining laboratory patterns that are sufficiently ideal that only 

a few modes are required for a complete spectral description is relatively unusual. 

Typically, the desired information is the global average wave number (q) over some 

wave number band of interest. For these purposes it is convenient to separate the 

two-dimensional power spectra information into radial [Fig. 22(b)] and angular [Fig. 

22(c) & 22(d)] components. These components are then averaged over all of the im-

ages acquired at a given set of parameters, yielding average q distributions in radial 

and angular directions. Three spectral quantities useful for describing patterns can 

be found directly from the average radial power. The first is the relative power (0), 

which is typically computed over a band of wave numbers. In the example pattern 
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(Fig. 21) stripes in the horizontal and vertical directions were chosen to have two 

distinct wave numbers qx  and qy  = 2.9qy ). Correspondingly, the radial power 

(power as a function of q) displays two peaks [Fig. 22(b)]. To compute the power at 

qx  and qy  a band of wave numbers about each peak is considered. Contributions to 

the distribution are excluded when they drop below some noise threshold, typically 

set to 0.5%. Applying this method once to a band of wave numbers about each of 

the two pronounced peaks in Fig. 22(b) yields the relative contribution from the ver- 

tical stripes [Fig. 21(a)] 	= 0.499 and the relative contribution from the horizontal 

stripes [Fig. 21(b)] 	= 0.499. Since the power spectrum can be understood as a 

measure of the variance in a pattern over a set of wave vectors and both the vertical 

(x) and horizontal (y) components of the example pattern have unity amplitudes the 

power contributions at the two distinct wave numbers should be equal. The first two 

moments of p(q) distributions, 

< q > 

< q2 > 

47, q2 P(q)dq  

qP(q)dq 

4, q3 P(q) dq  

f qc7=13 qP(q)clq 

(20) 

(21) 

may be used to define the compute the global wave number q =< q > and the width 

of a q distribution (a = V< q2  > - < q > 2 ). Using the set 64 programs written to 

analyze the experimental images yields: qg  = 0.131, ag  = 7.61 x 10-3 , qs  = 0.380, 

and as  = 7.59 x 10 -3 . From these calculated wave numbers the ratio qs/q = 2.90 

in confirmation of the originally chosen wave numbers. 
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3.6 Numerics 

3.6.1 Conduction Marginal Stability 

As a first step in considering the effects of time dependent acceleration on convec-

tion, calculations of conduction stability are performed. Using a Galerkin method as 

described by Clever, Schubert Sz Busse (52] the predictions of modulation enhanced 

conduction stability are reproduced over a range of parameters. Conduction is found 

to be significantly stabilized by time dependent acceleration. For the purpose of the 

analysis the fluid is assumed to lie between two parallel plates of infinite lateral extent 

separated vertically by a distance d. Temperature of the upper plate is T1  while that 

of the bottom plate is T2 =- T1 + AT. Both plate temperatures are assumed to be 

uniform. Boundary conditions at the bounding plates are 

T= 
T1 , 

± 

z = 1/2 

z = —1/2 
and 	v = 0, 	z = +1/2. 	(22) 

    

The conducting steady state solution (v = 0, a
t 

= 0) which satisfies these boundary 

equations as well as the hydrodynamic equations of motion is given by: 

Tcond 	± AT(-
2 
 — z). 	 (23) 

Taking this conducting state as the base state, it is possible to find the conditions 

for which this state becomes unstable to infinitesimal perturbations, giving way to a 

convective state. To do so, consider perturbations to the fluid temperature, velocity, 

and pressure distribution of the base state: 

T = Tcond e, 	v = v, 	p = Pcond Sp. 	 (24) 
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Linearizing the Oberbeck-Boussinesq equations [Eqs. (13)] to consider perturbations 

about conduction yields: 

V V = 0, 	 (25) 

V2v + (1 
	

at 
 E cosCOS Wt)02 — VP = isT 	 (26) 

OH  v 2e + Rvz  = at   . 	 ( 27) 

Due to the symmetry in the x— and y--directions, it makes sense to eliminate y 

and consider only the x— and z—directions. For such a system of two-dimensional 

motions, the Boussinesq condition allows us to characterize the velocity field by a 

scalar potential 0 yielding, 

	

v=Vx(77 x0i). 	 (28) 

Substituting this velocity potential into Eq. 26 and taking the y—component of the 

curl of each side of the equation yields 

ax 
(\74 0 — (1+ Ecoswoo) =l a

P at 
(

Tht.
v26) 

* 

Linearizing the temperature equation and inserting the potential gives 

020 ao  
v2e - R 	— . 

ax 2 	at 

We can use Eqs. (29) & (30) with the boundary conditions, 

at 	z = +1/2, 	 (31) 

to find the linear stability of the base state. 

The coupling of the equations along with the nature of the boundary conditions 

prevents this system from being analytically solvable. Thus, we must find a numerical 

(29) 

(30) 
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approximation. It should be noted that the set of functions 

fu (z) = sin [v7r (z + 1/2)] , 	 (32) 

provide an orthogonal basis of solutions which satisfy the boundary conditions for 8, 

cos eq. (+1) z) 

cos (1 7yi ( , +1) ) 

n (;y4 , z) 

n ( 71fh 

cosh (-4. (, _Fi) z) 

cosh (1 7q (,+1) ) 

sinh 	, z) 	si 

sinh 	 si 

while 

gv (z) 

for v even 

(33) 

for v odd, 

satisfy the boundary conditions for cb, where - -yo,+i)  and y 2 v  are the positive roots of 

the equations, 

1 
tanh(-

2
7) 

1 
coth(-

2
-y) 

tan(27) = 0 

l„ 
cot( 2 7) = 0, 

and 

(34) 

given in Chandrasekhar [59]. Thus, any expansion in these functions will satisfy the 

boundary conditions. In addition, we will assume a periodic dependence on x with 

wavenumber q. 

The functions gv (z) and f,(z) above can be divided into two classes: those that 

are symmetric about z = 0 (cases of odd v) and those that are antisymmetric about 

z = 0 (cases of even v). It was shown by Clever & Busse [60] that the conduction 

state is stable with respect to antisymmetric perturbations in z as long as it is stable 

with respect to symmetric perturbations in z. Thus, it will suffice to look only at the 

case in which v is odd. 

Finally, we wish to find the condition for marginal stability — that is, when the 

perturbations neither grow nor shrink in time. Recall from the pendulum stability 
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odd (3, odd v 

04-v<N 

(a Q„ cos 1 it + 600  sin —2  wt) (cos qx)gv (z) 	and 
odd 0, odd v 

13+v<N 

(60, cos (3-- wt + bo v  sin —I@  wt)(cos qx) f u  (z). 	 (36) 
2 	 2 

discussion in Sec. 2.1 that this means a time dependence of ea t , where Re[Q] = 0. 

Due to the sinusoidal driving term, it is expected that Im[a] 0. In fact, there are 

two cases to consider. In the first case, the fluid flows at the same frequency (and 

integer multiples thereof) as the driving force. These are pure harmonic flows which 

may be represented by 

0-Fv<N 

eto, cos Ocot + 6,3, sin Owt) (cos qx)m,(z) 	and 
/3, odd v 

0-Fv<N 

(60 ,, cos Ocut + boy  sin Owt)(cos qx) f v (z). 	 (35) 
/3, odd v 

The other case is one in which the fluid flows with 1/2 (and higher odd half integer 

multiples) of the driving frequency. These are pure subharmonic flows, which may be 

represented by the expansions: 

0 -= 

Note that these expansions are simply the N th  order truncations of sums which should 

converge to the exact solution for harmonic or subharmonic oscillations as N —> oo. 

All that remains is to take the N th order approximation, and plug the expansion 

into the differential equations. This changes the linear differential equations in 

and 0 into a system of linear algebraic equations in the coefficients iisv , 	600 , 

and bs v . This system yields a characteristic equation in the four nondimensional 

parameters (R, Pr, c & w) and a wavenumber q. Recall that c is the acceleration 

nondimensionalized by gravity and 6Fr =c1c.J2. 
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Onset of convection is then determined for a fixed Pr and w by looking for onset 

over a range of E. For a given c a wavenumber q is chosen, and R is varied by an 

amount SR until it yields a root in the secular equation for the linear system. This 

value of R is stored, and q is increased by Sq. The procedure is repeated and the 

smallest root in R is selected as the N th order approximation to the critical Rayleigh 

number (R e ) with corresponding wavenumber qc  for the c in question. The entire 

procedure is then repeated to find R, and qc  over a range in oscillation amplitudes. 

The iteration grid in these trials was chosen so that SR = 10 and oq = 0.2, 

yielding the numerical value of R, to within +5. In some cases, multiple values of q 

yield identical results for the root in R. In this case, the mean of all such values is 

used for qc . In no case was this range of q more than +0.2, so this N th  approximation 

to qc  is found to better than +0.1. This accuracy is limited by the number of terms 

used in the expansion. Thus, to find the best value, the truncation parameter N 

(recall the expansion is restricted as: /3 + v < N) is increased until the computed 

approximation to the Rayleigh number changes by less than 5% when N is replaced by 

N — 2. In practice, this convergence was reached for harmonic flows by N = 7, where 

the maximum change was 3.6% right at the marginal stability cusp [Figs. 23(a) 

23(c)], and most of the values changed by less than 1%. For subharmonic oscillations, 

the convergence test was reached when N = 6, at which point all values changed by 

less than 1%. 

3.6.2 Pattern Simulations 

The nature of the numerical simulations are beyond the scope of this dissertation 

and are reported in detail in the dissertation of Oliver Brausch [28]. The basic task 
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is to solve the Oberbeck-Boussinesq equations [Eqs. (13)], and in some cases retain 

non-Boussinesq corrections. The numerical codes, which implement a pseudo-spectral 

method, were developed and tested extensively by Werner Pesch [56] in the context 

of simulating classical Rayleigh-Benard convection. Pesch and Brausch modified the 

classical Rayleigh-Benard convection codes to account for time dependent acceler-

ation [61] to apply they to the current problem. Additionally, the dissertation of 

Oliver Brausch contains numerical investigations of behaviors not accessible to the 

experiments described here, including the case of heating from above (T 1  > T2 ) and 

relaxation oscillations. 
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CHAPTER 4 

Onset of Convection 

This chapter focuses on laboratory investigations of predictions made in the relevant 

literature for the effects of modulation on convection, the patterns observed near on-

set and the role of inversion symmetry in selecting the onset planform. First, results 

from the linear stability analysis described in Sec. 3.6.1, predicting the onset of in-

stability, are presented. These calculations indicate modulation stabilizes conduction 

against perturbations over a large range of parameters. Second, predictions of mod-

ulation shifting onset are confirmed by measuring convection onset at w = 98.0 in 

the laboratory. These measurements confirm the numerical expectations for critical 

Rayleigh Re  and wave numbers qe  at onset. Third, harmonic temporal dependence 

is experimentally confirmed and the patterns typically observed at harmonic onset 

are presented. Violations of the Boussinesq symmetry are found to produce hexagons 

in harmonic patterns over a parameter range. Lastly, subharmonic temporal depen-

dence is confirmed for patterns at the appropriate parameter values and the patterns 

typical of subharmonic onset are presented and discussed. 
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Figure 23: Results from a marginal stability analysis of the Boussinesq equations 
[Eqs. (13)] linearized about the conduction state for Pr = 0.93 and w = 50 (a & b) 
as well as co = 100 (c d). 
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4.1 Onset Predictions 

Conduction marginal stability calculations indicate shifts in the onset of convection 

[Fig. 23(a) & 23(b)] are sensitive to the values of the modulation parameters (SFr 

w). As described in Sec. 3.6.1 fluid motion is expected to display either harmonic 

(periodic at 'r) or subharmonic (periodic at 2r) temporal dependence. The marginal 

stability curve for harmonic convection intersects with the classical Rayleigh-Benard 

value M in the no-shake limit. Increasing modulation from the no-shake limit the 

onset of harmonic convection occurs at only slightly larger values initially. However, 

as either 8Fr or w continue to increase the stabilization of conduction becomes signif-

icant [Fig. 23(a) & 23(b)]. In fact, the slope of the harmonic stability curve becomes 

quite large rather abruptly for sufficient modulation parameters. At larger values of 

the modulation parameters the harmonic instability is preceded by a subharmonic 

instability. With increasing SFr or w conduction will be stable over a diminishing 

range of R. Depending on the modulation parameters subharmonic convection in-

stability is expected to destabilize conduction below 11( ). For example, at w = 100, 

R < R(2 for SFr > 9 x 10 -4 . Thus modulation may have a stabilizing or destabilizing 

effect depending on the values of the modulation parameters. 

Marginal stability analysis also indicates the wave numbers of harmonic and sub-

harmonic convection at onset (qH  & qs  , respectively) may take on significantly dif-

ferent values. For Pr 1 fluids (here Pr = 0.93) q H  is relatively independent of 

the modulation parameters except in the vicinity of the intersection of the marginal 

stability curves. By contrast, qs  is strongly dependent on the modulation parameters. 

In these investigations qH  > qs  
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A potentially interesting area of the parameter space is the intersection of the 

harmonic and subharmonic marginal stability curves. At this cusp conduction is sta-

ble over the largest region of R while varying either SFr or w and holding the other 

modulation parameter fixed. Additionally, at the point of intersection conduction is 

expected to become unstable to both harmonic and subharmonic convection simul-

taneously. Onset at the bicritical point could occur to patterns at VI  & q S  or some 

combination of the two distinct wave numbers. The primary bifurcation at the bicrit-

ical point has a codimension of two. In parameter space the bicritical point location 

(SFr = 6Fr2,, R = R2c ) moves to smaller SFr and larger R with increasing w [Fig. 

23(a-b)]. 

4.2 Onset Measurements 

In the no-shake limit (SFr = 0, w = 0) the experiment reduces to classical Rayleigh-

Benard convection. Onset of convection in classical Rayleigh-Benard convection oc-

curs at Rc°  = 1708 with qc°  = 3.116. If spatial inversion (Boussinesq) symmetry is 

approximately present the onset planform is parallel stripes. Our no-shake exper-

iments find parallel stripes at onset (Fig. 24). Hexagons are not observed in the 

no-shake onset measurements indicating the Boussinesq symmetry is present at cor-

respondingly small temperature differences, 5.5 < AT < 6.5 C, depending on the cell 

depth. 

Moving away from the no-shake limit by imposing vertical oscillations experiments 

confirm conduction is stabilized in quantitative agreement with marginal stability pre-

dictions [Figs. 25(a) & 58 - App. A]. Experiments mapping the onset of convection 
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Figure 24: Parallel stripes observed near onset (Pr = 0.943, R = 1760) in the absence 
on shaking (c.,) = 0). 

are performed at w = 98.0. Since oFr ti  d' and R ti & any small errors in the 

measurement of d are appreciable in the experimentally determined parameter values. 

By adjusting d within the certainty of its measurement the data points in Fig. 25 

collapse directly on the linear stability curves. 

In agreement with results previously reported by other investigators the current 

numerics indicate harmonic and subharmonic patterns display significantly different 

wave numbers. Shown in Fig. 23(c-d) are the predicted onset values for harmonic 

wave numbers qr and subharmonic wave numbers q cs  at (a) w = 50 and (b) w = 100. 

Wave numbers of laboratory patterns are the first moment of a distribution in the 

radial power (p) averaged over all images recorded at a data point (see Sec. 3.5 for 

example). Additionally, the second moment of this power distribution is the variance 

of the q-distribution, indicating the width a. The q-values shown in Fig. 25(b) are 
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Figure 25: Comparison of conduction stability predictions with laboratory observa-
tions made at w = 98.0 for (a) R, and (b) qc . Harmonic measurements are denoted 
by ❑ while A marks measurements at subharmonic onset. 
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Figure 26: Images from an automated experimental run to determine stability bound-
aries and the corresponding 0(0 for each image. Parameters are w = 99.4 for all 
points and (a) SFr = 4.06 x 10 -4  & R = 4280, (b) SFr = 3.99 x 10 -4  & R = 4260, 
(c) SFr = 4.91 x 10-4  & R = 4260, and (d) SFr = 4.29 x 10 -4  & R = 4220. 
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for the patterns observed at the last experimental data point before crossing into 

conduction. For the crossing shown in Fig. 26 the pattern used to calculate qs is Fig. 

26(b). Data used in producing Fig. 25(b) is the same as that used to produce Fig. 

25(a). 

In the laboratory these points are determined by slowly increasing SFr at some 

R > R, in steps of 1x10 -6  until fluid motion is no longer detectable. The temperature 

difference is then incremented and the amplitude is decreased or increased sufficiently 

to ensure convection. Once the experiment displays convection SFr is slowly varied 

to again approach conduction. This 'zig-zagging' across the marginal stability line is 

repeated as the experiment maps out the boundary. Each time the system parameters 

are changed the fluid was allowed to relax for 3000r, (45 minutes) before data is 

recorded to allow transients to die away. After recording images and moving them 

onto hard disk MatLab scripts on another computer analyzed the images by subtract-

ing a uniform state background from each image and computing the spatial power 

spectra. When less than 10% of the individual images (typically 64 at each data 

point) displayed power at wavelengths less than the pixel width of the cell the state 

was called conduction. Post analysis of these trials demonstrated the reliability of 

this approach and typically the dynamical analysis did an excellent job of recognizing 

the loss of fluid motion. 

Classical Rayleigh-Benard convection studies (no-shake) have found pattern sym-

metries observed at onset are dependent on the nature of the primary bifurcation 

[62, 63, 64]. In the presence of Boussinesq symmetry, stripes are observed as a result 

of a supercritical (forward) primary bifurcation. When Boussinesq symmetry is not 

maintained the forward stripe bifurcation is unstable. Instead, hexagons are observed 
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at onset as the result of a subcritical (backwards) bifurcation (Fig. 1). Associated 

with this backwards bifurcation is a region of hysteresis allowing hexagons to be 

stable below the original onset. Moving away from onset stripes become the stable 

solution. Depending on the fluid and convection cell geometry used there may be 

an intermediate region of stripe-hexagon bistability observed [64, 63]. Bodenschatz 

et al. [62] studied the primary bifurcation in unmodulated compressed CO 2  when 

Boussinesq symmetry was violated. These authors confirmed the predicted bifurca-

tion diagram for the stability of stripe and hexagon solutions. Using a large aspect 

ratio cell (F = 86) and carefully controlling physical quantities they were able to 

observe the expected hysteresis in experiments, but did not observe stripe-hexagon 

bistability. The stability width for these various regions is dependent on how the 

Boussinesq symmetry is violated. In the experiments of Bodenschatz et al. a large 

AT 29 °C) was used to break Boussinesq symmetry by making the temporal de-

pendence of the fluid properties significant enough that non-Boussinesq effects could 

be observed. 

To investigate the nature of the bifurcations for acceleration modulated Rayleigh-

Benard convection two types of experimental approaches are employed. First, (SFr 

is slowly increased (decreased) from harmonic (subharmonic) convection while R is 

held fixed. After the system has passed into the conduction regime it continues slowly 

adjusting parameters to move further into conduction. While remaining at fixed R 

the experiment then 'turns-around' decreasing (increasing) SFr until convection is 

again observed. Second, the 'zig-zagging' approach originally employed to determine 

the boundaries is used, only this time the system finds the boundary from inside 

conduction. In particular, the system begins from the conduction region and decreases 
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Figure 27: Temporal dependence of Fourier modes (simulation) in the fluid layer mid 
plane during simulations of (a) purely harmonic convection and (b) purely subhar-
monic convection. 

(increases) SFr at constant R until convection is detected. Next, R is changed and 

6Fr is increased (decreased) sufficiently for the system to be back in conduction. 

Now the whole process begins again as the experiment determines the next onset at 

the new fixed R. Marginal stability boundaries found from the first method as well 

as from comparing the boundaries found by zig-zagging along onset beginning from 

convection and conduction did not display hysteresis greater than the experimental 

resolution in (SFr 2 x 10'). 
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4.3 Harmonic Onset 

4.3.1 Temporal Dependence 

At relatively small modulation parameters fluid motion is expected to be harmonically 

modulated. For harmonic stripe patterns numerics indicate particle velocities will 

oscillate about nonzero mean [Fig. 27(a)]. Thereby, while volume element velocity 

will reverse directions during a drive cycle, on average the fluid will overturn. Heat-

flux across the fluid layer is less than in the absence of modulation. While measuring 

particle velocities is not feasible for pure CO 2  the expected variations in temperature 

should be observable in the shadowgraph imaging technique. Shadowgraphy images 

the lateral temperature field gradients averaged over the depth of the fluid layer. 

Fig. 28 confirms the expected temporal dependence for a harmonic stripe pattern by 

showing the parallel stripe state changes at T/2 and is periodic at T in the laboratory. 

4.3.2 Harmonic Onset Patterns 

At harmonic onset parallel stripes [Fig. 29(a)] and targets [Fig. 29(b)] are observed, 

both of which may contain domains of hexagons [Fig. 29(c-d)]. Parallel stripes and 

targets may be found anywhere (2000 < R < 4500) along the harmonic stability curve 

[Fig. 25(a)], while domains of hexagons only occur close to onset at larger R values 

(3800 < R < 4800). From classical Rayleigh-Benard convection studies in compressed 

gases (Pr ti 1) it is known that parallel stripes form when the side wall forcing is 

minimal and that cell filling (giant) targets or spirals are present near onset when the 

side wall forcing is more significant (for example, due to side wall heating [65]). In 
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Figure 28: Shadowgraph (experiment) displaying harmonic temporal resonance, pe- 
riodicity at T. At t = 0 (a) the stripe state is well defined. For odd multiples of T (b 

d) the stripe state becomes broader, while at even multiples of T the original state 
repeats (c). Each 128 by 128 pixel frame is over the same spatial location separated 
in time by T/2. 
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Figure 29: Harmonic onset striped patterns include: (a) parallel stripes (SFr = 
3.34 x 10 -4 , w = 97.8 & R = 3002), (b) targets (SFr = 3.29 x 10 -4 , w = 98.0 & 
R = 2979), (c) stripes with hexagons (SFr = 3.71 x 10-4 , w = 96.2 & R = 4388), 
and (d) targets with hexagons (SFr = 3.76 x 10-4 , w = 96.6 & R = 4107). 
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the experiments we performed the forcing due to the side walls varies with the differ-

ent experimental configurations. Stronger side wall forcing from the circular lateral 

boundary results in targets while weak side wall forcing allows a parallel stripe for-

mation. In the experiments described here harmonic targets and spirals are observed 

during particular sets of laboratory trials. Targets may display light or dark cores, 

designating cold (downflowing) or warm (upflowing) centers, respectively. Domains 

of hexagons may be present in both striped and target base states at larger R values 

with the domains of hexagons becoming larger with R. Hexagons with both downflow-

ing centers [Fig. 29(c)] and upflowing centers [Fig. 29(d)] are observed. Transitions 

between domains of locally upflowing and downflowing hexagons are also observed. 

Meyer, Cannell, & Ahlers reported [39] similar mixed stripe-hexagon patterns in a 

study of thermally modulated Rayleigh-Benard. They were able to measure the vari-

ous expected bifurcation points expected to be associated with non-Boussinesq effects 

resulting in a backwards bifurcation. Mixed hexagon-stripe states were observed when 

the hexagon and stripe attractors were expected to be simultaneously stable (corre-

sponding to R, < R < Rb in Fig. 1). Hexagons in the experiments of Meyer, Cannell, 

& Ahlers were reported to have downflowing centers with no mention of upflowing 

hexagons. Onset hexagons are not inversion symmetric. The presence of hexagonal 

domains indicates Boussinesq symmetry is no longer valid at the corresponding exper-

imental conditions allowing resonant triads between the harmonic modes to select the 

hexagons. In thermally modulated Rayleigh-Benard Boussinesq symmetry is violated 

by a nonlinear temperature profile. In the current experiments Boussinesq symmetry 

is broken due to the increased AT (R ,-- AT) required to reach such large R values. 

It should be expected that harmonic hexagons will be most noticeable in the vicinity 
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of the bicritical point since this is the conduction cusp where AT is the largest at 

onset. Over the purely harmonic region the majority of stable states are strikingly 

similar to patterns found in classical Rayleigh-Benard convection studies. 

4.4 Subharmonic Onset 

4.4.1 Temporal Dependence 

At sufficiently large modulation parameters conduction is expected to lose stability 

to convection displaying subharmonic time dependence [Fig. 27(b)]. This type of 

fluid motion should occur as the system passes through the dashed line in Fig. 25(a). 

Oscillations in the subharmonic temperature field must satisfy the subharmonic time 

translation (inversion) symmetry which requires the field variables invert under dis-

crete time translation by T. In terms of the shadowgraph this is displayed by the 

light and dark pattern areas switching every T. In the laboratory the experiment was 

tuned to just beyond the subharmonic marginal stability curve where a particular 

defect (convex disclination) that emphasizes inversion is common. Every even multi-

ple of T the pattern in Fig. 30(a) occurs and every odd multiple of T the pattern in 

Fig. 30(b) is present. For Fig. 30(b) an arbitrary odd frame is chosen (t = 35r) to 

demonstrate the switching. Due to the symmetric switching fluid packets would not 

turn over and consequently heat flux will be greatly reduced when compared to the 

flux in the absence of modulation. 
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Figure 30: Close up of a convex disclination confirming subharmonic temporal de-
pendence. Note, the + signs near the image centers, these are plotted at the same 
coordinates in both frames. The disclinations center stripe is light at even multiples 
of T [(a) t=0] and dark at odd multiples of T [(b) t = 357-]. Shown are the same 
spatial locations of 128 by 128 pixel images with the + signs at the same pixel values. 
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Figure 31: Examples of patterns observed near onset of subharmonic convection. 
Patch (a) of parallel stripes (SFr = 4.02 x 10 -4 , w = 97.9 & R = 4395), (b) parallel 
stripes with five dislocations (SFr = 3.74 x 10-4 , w = 97.9 & R = 4857), (c) stripes 
with a giant convex disclination and several dislocations (SFr = 3.34 x 10 -4 , w = 97.5 
& R = 4811), and (d) onset spiral (SFr = 4.12 x 10', w = 97.9 & R = 4173). 
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4.4.2 Subharmonic Onset Patterns 

At the onset of subharmonic convection striped patterns form. Observed onset states 

are parallel stripes [Fig. 31(a-b)], stripes with a long wavelength distortion (Fig. 44 

& [66]) and spirals [Fig. 31(d)]. Subharmonic stripes possessing a long wavelength 

distortion are only observed in rotating patterns (Sec. 5.3). Dislocations and convex 

disclinations are common point defects [67] present near onset [Fig. 31(b-d)]. If giant 

convex disclinations [Fig. 31(c)] or giant spirals [Fig. 31(d)] form at onset they are 

typically centered about the experiment mid point and may move off center as the 

system begins to move away from onset. In the majority of cases, the onset planform 

is parallel stripes. However, giant convex disclinations are also common near onset, 

while cell filling concave disclinations are not observed. All point defects may be 

described as the composite of two topological types: concave and convex. A discli-

nation is the place where the pattern director field is undetermined. At subharmonic 

onset only convex disclinations are observed. Cell filling subharmonic spirals are 

present with increased side wall forcing and observed only when targets and spirals 

are the harmonic onset planform. However, subharmonic spirals are unusual even 

when targets are the harmonic onset planform. Due to the characteristic wave length 

of subharmonic patterns being substantially smaller than that of harmonic patterns 

it might be expected that side wall forcing would have less of an influence over the 

selected planform. Only one and three arm giant subharmonic spirals are observed. 

Hexagons are not observed anywhere along the subharmonic marginal stability curve. 

While violations of the spatial (Boussinesq) inversion symmetry resulted in harmonic 

hexagons at similar R numbers, subharmonic modes must also satisfy time-translation 
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inversion symmetry which continues to exclude hexagons near onset. 

4.5 Discussion 

Experiments confirm predictions that convection is stabilized by modulation. Results 

from a linear stability analysis of the equations of motion in the Boussinesq approx-

imation are in qualitative agreement with the predictions reported by other authors 

[35, 50, 52, 53]. Experiments quantitatively agree with linear stability for the onset 

of both harmonic and subharmonic convection. No evidence of hysteresis is experi-

mentally observed at the onset of convection. In the vicinity of the bicritical point 

where conduction stability is the most enhanced the temperature difference imposed 

across the fluid layer is relatively large and it is this large AT that is responsible 

for violating the Boussinesq symmetry. At w = 98.0 conduction was observed up to 

R = 4553. 

Conduction is confirmed to become unstable to fluid motion displaying two distinct 

wave numbers: qH  and qs . For R < 3100 harmonic onset occurs to stripes or targets 

[Fig. 29(a)], while for larger R patterns display regions of coexisting hexagons like 

those shown in Fig. 29(c-d). The global qH of these patterns is relatively constant 

with increasing SFr until relatively close to the stability cusp, in confirmation of 

the expectations from linear stability. Subharmonic onset occurs to stripes, though 

convex disclinations are often observed [Figs. 26(a,b,d) & 31(c)]. 

Fluid motion was shown to occur in harmonic and subharmonic resonance to w. 

The temperature field is predicted for harmonic convection to oscillate with a period 

of T about nonzero mean, while for subharmonic flows it is expected to oscillate 
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with a period of 2T about zero mean. Recording shadowgraphic images at half the 

modulation period i laboratory observations confirmed these predictions. 
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CHAPTER 5 

Observations 

In addition to confirming predictions made in the existing literature this dissertation 

examines patterns and transitions over a wide parameter range, revealing several novel 

characteristics of acceleration modulated Rayleigh-Benard convection. Appendicies 

A & B are reprints of two Physical Review Letters [66, 68] that summarize significant 

aspects of the results reported in this Chapter. Throughout this chapter frequent 

reference will be made to these appendices and the included figures. 

This chapter will begin by describing the patterns observed as parameters are 

changed to move the fluid away from onset and into the region of harmonically mod-

ulated convection (Sec. 5.1.1). It will be shown that the observed purely harmonic 

patterns and transitions between them are typical of those found in classical (unmod-

ulated) Rayleigh-Benard convection. Numerical solutions of the Oberbeck-Boussinesq 

equations [Eqs. (13)] at the appropriate parameter values reproduce laboratory ob-

servations. Next, adjusting parameters to move away from the subharmonic onset 

typical examples displaying purely subharmonic modulation will be presented (Sec. 

5.1.2). 

For sufficiently large R conduction is not stable for any SFr and experiments 

find a gradual transition between purely harmonic and purely subharmonic patterns 
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through a region of harmonic-subharmonic coexistence. The experimental boundaries 

defining the coexistence region track the conduction marginal stability curves well into 

the convection regime. Patterns on both sides of the pure harmonic-coexistence and 

pure subharmonic-coexistence boundaries are discussed in Secs. 5.2.1 & 5.2.2, respec-

tively. Spectral measures are used to characterize a typical pass through coexistence 

at constant R and varying 8Fr. Numerical solutions of the Oberbeck-Boussinesq 

equations [Eqs. (13)] reproduce both the pure patterns and coexistence states near 

the coexistence boundaries. Pattern rotations observed in experiments, but not in 

numerics, are described in Sec. 5.3. While these rotations are found to be influenced 

by the magnitude of lateral drive shaft vibrations pattern rotations have the curious 

property that harmonic and subharmonic modes always rotate in opposite directions. 

Next (Sec. 5.4), observations of complex-ordered patterns are reported in both ex-

perimental and numerical trials. The transition to these exotic states from various 

parameter directions is considered. Experiments probing these transitions suggest 

interactions between the stimulated modes are involved in the pattern formation. In 

Sec. 5.4.3 a mechanism that is qualitatively different than the resonant triads used to 

explain the formation of superlattices and quasipatterns in other pattern forming sys-

tems is proposed. The roles of system symmetries in planform selection are discussed 

and violations of the Boussinesq symmetry are found to explain differences between 

the experimental and numerical results in the vicinity of the bicritical point. Finally, 

in Sec. 5.4.4 the sensitive wave number dependence of q cs  on w for Pr ti 1 fluids is 

used to investigate changes in complex-ordered structure as the separation between 

q,11  & qcs  is varied. Several other novel complex-ordered patterns are reported, all of 

which are found to satisfy the formation mechanism proposed in Sec. 5.4.3. 
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5.1 Observed Patterns 

A rich variety of patterns which may display one of two distinct characteristic lengths 

and associated time scales (pure states) are observed in the convection regime. In 

Chapter 4 the onset of these patterns was considered and it was found that harmonic 

patterns occur for relatively smaller values of the modulation parameters, while sub-

harmonic patterns are found at relatively larger values of the modulation parameters. 

Harmonic states and the transitions between these patterns are typical of those pat-

terns observed in unmodulated Rayleigh-Benard convection studies. These include 

parallel stripes, multi-foci stripes, multi-arm spirals, and spiral defect chaos away 

from onset. Purely harmonic responding patterns are composed of the larger length 

scale, while the length scale for purely subharmonic patterns is significantly smaller. 

Typical subharmonic patterns are a striped base state that may contain defects in-

cluding disclinations, dislocations, grain boundaries, and cross-rolls. Additionally, 

subharmonic stripes are found to possess transverse modulations over a range of pa-

rameters away from onset. Beyond the transverse modulated stripes, relatively far 

from onset, subharmonic patterns lose all discernible structure. 

5.1.1 Harmonic Patterns 

Harmonic onset patterns (see Sec. 4.3.2) undergo a transition to spiral defect chaos 

as the system moves further into the convection regime by combinations of decreasing 

6Fr and increasing R at fixed Pr and w (Fig. 32). Domains of hexagons observed 

near onset at larger R values are replaced by a cell filling striped state as the system 
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Figure 33: Examples of typical patterns observed moving away from onset stripes: 
(a) stripes with defects and two wall foci forming (6Fr = 3.47 x 10', w = 98.4, & 
R = 3820), (b) three foci stripes (SFr = 3.36 x w = 98.4, & R = 3830), (c) 
spiral defect chaos (6Fr = 2.06 x 10 -4 , w = 96.2, & R = 4290), and (d) far from 
onset cellular patterns (SFr = 2.70 x 10', w = 100.3, & R = 7920.) 
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begins to move into the convection regime. In the thermally modulated Rayleigh-

Benard experiments of Meyer, Cannell, & Ahlers [39] parallel stripe states were also 

observed after the mixed stripe-hexagon patterns as the system moved further from 

onset. Depending on the magnitude if side wall influence this striped state could be 

parallel stripes (weaker forcing) or giant targets (stronger forcing). Our observations 

in acceleration modulated Rayleigh-Benard are consistent with those made by Meyer, 

Cannell, & Ahlers [39] in thermally modulated Rayleigh-Benard. In the transition 

from parallel stripes to spiral defect chaos, stripe's ends become increasingly per-

pendicular to the lateral side walls creating focus singularities. Initially, two foci will 

form [Fig. 33(a)] and as the stripe curvature increases patterns similar to the so-called 

Pan-Am states observed in classical Rayleigh-Benard convection at comparable Pr 

and aspect ratio form. Moving away from onset stripe curvature will gradually in-

crease and more wall foci will emerge [Fig. 33(b)]. As more focus singularities become 

present, increasing numbers of dislocations and grain boundaries will be found in the 

pattern interior. Generally, once the number of wall foci is larger than four, spirals 

will begin to appear in the interior of the pattern (spirals do not typically arise at 

the boundaries). The system will then begin to display spiral defect chaos composed 

of left and right handed spirals [Fig. 33(c)]. As spiral defect chaos gradually fills the 

convection cell the power spectrum distribution broadens. However, the increasing 

q" width (a") is still characterized by a well-defined characteristic q. For sufficient 

6Fr and relatively large R values the characteristic q becomes less well-defined, a" 

becomes large as spiral defect chaos gradually gives way to patterns qualitatively 

similar to Fig. 33(d), composed of cellular structures and some stripe sections with-

out spirals. The emergence of dislocations and grain boundaries, focus singularities 
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and the increasing of aH  about a characteristic q observed in the transition from 

stripes to spiral defect chaos in harmonic patterns is the same as reported in classical 

Rayleigh-Benard [69, 65]. 

When the side wall influence is more substantial the onset striped pattern is a 

target and the transition to spiral defect chaos is somewhat different from the transi-

tion from parallel stripes. Moving away from onset targets typically lose stability as a 

dislocation which may be nucleated at the side walls translates radially to the target 

center (core), resulting in the formation of a one arm spiral. Moving away from onset 

a defect mediated transition from targets to spirals occurs (Fig. 34). Pairs of defects 

emerge in the pattern due to skew-varicose instabilities [Fig. 34(a & d)]. One defect 

will translate radially to the spiral core producing a one arm spiral, while the other 

defect will translate radially to the side walls and be annihilated [Fig. 34(b)]. In Figs. 

34(b) & 35(a) the defect pairs originate due to a skew-varicose instabilities which re-

sult in one arm spirals and targets. Sufficiently near onset this mechanism can result 

in continuous switching between targets and one arm spirals (Fig. 34). Continuing 

away from onset additional defects enter the pattern due to skew-varicose instabilities 

producing multi arm spirals, as many as six arm spirals being observed. Occasionally, 

an additional instability results in the targets or spirals cores moving off-center. An 

example of this off-center instability in shown in Fig. 35(b-c) for a three arm spiral. 

As the fluid moves away from onset skew-varicose and off-center instabilities result 

in numerous defects throughout the pattern and the spiral will become unstable as 

spiral defect chaos [Fig. 35(d)] forms. The defect mediated transition from cell filling 

targets to spirals and off-center motion of spiral centers during the gradual transition 

to spiral defect chaos (which contains numerous smaller spirals) has been reported in 
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Figure 34: Examples of dislocation pairs due to skew-varicose instabilities mediating 
oscillations between targets and one-arm spirals. Images are separated in time (in 
seconds) at the same parameters (6Fr = 1.74 x 10 -4 , w = 98.4, & R = 2480): (a) 
t = 0, (b) t = 10, (c) t = 30, (d) t = 40, (e) t = 45, & (d) t = 60. 
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Figure 35: Examples of typical patterns observed moving away from onset target: 
(a) one arm spiral (SFr = 1.74 x 10 -4 , w = 98.4, & R = 2480), (b) multi-arm spiral 
(SFr = 1.95 x 10 -4 , w = 99.4, & R = 2420), (c) off-center multi-arm spiral (SFr = 
2.26 x 10 -4 , w = 99.0, & R = 2940), and (d) spiral defect chaos (SFr = 2.30 x 10 -4 , 
w = 98.5, & R = 3660.) 
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classical Rayleigh-Benard convection studies [70]. 

5.1.2 Subharmonic Patterns 

Moving away from subharmonic onset (Sec. 4.4.2) patterns always form a parallel 

stripe state. Point defects that cause convex disclinations or spirals may persist 

near onset but will not be stable far from onset due to dislocations or an off center 

instability. Away from onset, stripe states include dislocations and cross-roll defects. 

As a convex disclination becomes unstable dislocations propagate from the side walls 

to the core where the dislocations annihilate with a stripe in the core, often resulting 

in a adjustment in local wave number by a series of cross-roll defects on the stripes 

emanating from the core. Further away from onset, subharmonic stripe ends begin to 

align perpendicular to the side walls; a characteristic similar to the harmonic stripes. 

These states [Fig. 31(a)] may contain several dislocations and focal singularities. 

While subharmonic patterns may display several side wall foci and numerous defects, 

spirals or something similar to spiral defect chaos is not observed. Patterns of these 

types lie in the parameter region labeled subharmonic stripes in Fig. 32. 

As SFr and R increase stripes become more complex. Moving away from onset 

striped patterns, which typically contain two or three foci, transverse modulation 

[Fig. 36(b)] abruptly (Fig. 32) occurs throughout the patterns. These modulations 

appear as waves which propagate down the length of the stripes. Modulations on 

the individual stripes are correlated with distinguishable wave fronts observed to 

propagate across the pattern. Prior to the emergence of transverse modulations the 

pattern in Fig. 36(b) is stripes with three side wall foci. That striped pattern remains 

in Fig. 36(b) as the base state. At the intersection of stripes about the three foci 
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Figure 36: Examples of typical subharmonic patterns observed away from onset: (a) 
two foci stripes with defects (SFr = 4.17 x 10', w = 98.1, & R = 4888), (b) three 
foci transverse modulated stripes (SFr = 4.01 x 10 -4 , w = 98.0, & R= 6552), radial 
stripes - onset of subharmonic disorder (SFr = 4.83 x 10 -4 , w = 95.0, & R= 6120), 
and (d) subharmonic disorder (SFr = 4.60 x 10-4 , w = 95.0, & R= 7670.) 
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is an amplitude grain boundary; stripes about the lower two foci in this pattern 

terminate perpendicular to the stripes about the upper foci near the pattern center. 

Along the boundary between transverse modulated and disordered flows (Fig. 32) 

the subharmonic striped base state breaks down and stripes stretch radially from the 

center to the lateral side walls [Fig. 36(c)]. Near the center of these patterns coherent 

structure breaks down. Sufficiently far from onset the fragmented state nucleated in 

the interior occurs throughout the convection cell as a state like Fig. 36(d) forms. 

5.2 Direct Harmonic-Subharmonic Transition 

Considering the direct transition from purely harmonic convection to purely subhar-

monic convection which can occur when R is sufficiently large that conduction is no 

longer expected to be stable for any SFr (Fig. 32) reveals several novel aspects of 

acceleration modulated Rayleigh-Benard convection. First, the transition between 

pure harmonic and pure subharmonic flows is not abrupt, but occurs through a pa-

rameter regime where both responses coexist. Second, conduction marginal stability 

predictions roughly define the parameter range of harmonic-subharmonic coexistence, 

despite the system being well into the convection regime and away from the expected 

validity of linear stability predictions. Third, the transition between pure harmonic 

and coexistence is qualitatively different from the transition between pure subhar-

monic and coexistence. Lastly, several novel two scale patterns composed of har-

monic and subharmonic components are found. Numerical solutions of the equations 

of motion in the Boussinesq approximation reproduce experimental observations. 
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Figure 37: Phase plane comparing the experimentally measured coexistence onset to 
the marginal stability curves for conduction. Boundary between coexistent and purely 
harmonic flows (0) follows the marginal subharmonic (w/2) curve (dashed line), while 
the boundary between coexistent and purely subharmonic patterns (0) tracks the 
marginal harmonic (w) curve as far as the boundary can be reliably determined. 
Filled in triangles are the locations of patterns in Figs. 38 & 42. 
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Figure 38: Patterns (experiments) on either side of the purely harmonic-coexistence 
boundary. Pure harmonic stripes (a) with defects (SFr = 3.31 x 10 -4 , w = 98.0, 
& R = 6280). Coexistence state (b) with 3-foci harmonic stripes and subharmonic 
stripe patches (SFr = 3.54 x 10 -4 , w = 98.0, & R = 6280). 

5.2.1 Transition Between Pure Harmonic and Coexistence 

Patterns 

Purely harmonic patterns lose stability to coexisting states with localized regions of 

subharmonic stripes (Fig. 37). Prior to the boundary with coexistence, the har-

monic pattern typically consists of parallel stripes with defects [Fig. 38(a)] or a 

more irregular cellular pattern [Fig. 33(d)]. With increasing SFr at constant R, 

localized domains of subharmonic stripes emerge with a characteristic wavenumber 

qs  3qH  . These subharmonic domains are typically either centered about defects in 

the harmonic pattern or aligned perpendicular to the lateral boundaries [Fig. 38(b)]. 

Subharmonic stripes at the lateral boundary remain pinned to the boundary and do 
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Figure 39: Patterns (simulations) on either side pure harmonic-coexistence boundary 
displaying (a) multiple side-wall singularities (8Fr = 3.28 x 10 -4 , w --= 98.0, & R = 
6600) and (b) the same kind of localized subharmonic patches as observed in the 
experiments [Fig. 38(b)]. 

not advect into the interior. In the pattern interior harmonic defects continually nu-

cleate, advect and annihilate. Associated with the harmonic defects are subharmonic 

patches, which continually appear, move and disappear. Although harmonic defects 

are virtually always present for parameter values near the pure harmonic-coexistence 

boundary, not all harmonic defects have associated subharmonics. As a result, near 

onset, the subharmonic stripe patches are intermittent in time as well as space. Be-

cause of this intermittency, the onset of subharmonics is difficult to detect in spatial 

power spectra [Fig. 40(a-b)]. Detection of the onset of these intermittent states 

is most reliably performed using the real space images of the patterns. The onset 

value of 6Fr for a given R corresponds to the presence of subharmonic patches in the 

pattern interior for 10% of the observation time (Fig. 37). 
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Our results provide evidence that harmonic patterns have an inhibitory effect on 

the emergence of subharmonic patterns. In the first place, the boundary for convective 

onset in the experiments lies above the subharmonic marginal stability curve over the 

entire experimentally accessible range of parameters (Fig. 37). In other words, the 

subharmonic onset is delayed relative to the linear theory predictions of onset from 

the conduction state. Furthermore, subharrnonics always appear in regions of where 

the harmonic flows are weaker, namely in the cores of defects amplitude of convection 

flow is reduced [71]. 

The subharmonic component of coexisting convection remains localized and spa-

tially intermittent even as SFr is increased (with R fixed) to move the system well 

away from onset (Fig. 41). This type of behavior is confirmed in the simulations. The 

subharmonic component is spectrally indistinguishable from the background noise 

and the second harmonic of qH  over a wide range of SFr [Figs. 41 Sz 40(a-b)]. The 

wavenumber of the harmonic modes qH remains relatively fixed [Fig. 41(b)]. The 

spectral width o-H  decreases [Fig. 41(c)] due to the harmonic pattern becoming more 

ordered as the number of harmonic defects present near the onset of coexistence [Fig. 

38(a)] reduces significantly as the system moves further from onset into the coexis-

tence regime [Fig. 38(3)]. Simulations reproduce the qualitative features and 6Fr 

dependence (Fig. 39). In the coexistence region the subharmonic pattern compo-

nent will gradually increase with SFr, although it will not become distinguishable 

from background noise till the subharmonic contribution abruptly grows towards the 

coexistence region mid point in SFr (Sec. 5.4). 
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Figure 40: Azimuthally averaged power spectra for six different experimental condi-
tions from the transition between pure harmonic convection and pure subharmonic 
convection, passing through a region of coexisting harmonic-subharmonic convection. 
Representative images from each data point are shown in other figures: (a) in Fig. 
38(a), (b) in Fig. 38(b), (c) in Fig. 42(a), (d) in Fig. 42(b), (e) in Fig. 42(c), and 
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Figure 41: Spatial spectral analysis of the transition from pure harmonic convection 
to pure subharmonic convection, passing through a region of coexisting harmonic-
subharmonic convection with increasing 6Fr at R = 6280 ± 10. The azimuthally 
averaged spectra for both the harmonic and subharmonic modes are characterized 
by (a) the spectral power in each mode p H  & tjS , (b) the mode wave numbers q11  

qS , (c) the widths of the spectral peaks CT H  & aS , and (d) the wavenumber ratio 

Throughout, 0 indicates harmonic pattern component and A the subharmonic 
pattern component. Filled in symbols correspond to patterns shown in Figs. 38 & 
42. 
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5.2.2 Transition Between Pure Subharmonics and Coexis-

tence Patterns 

The transition between purely subharmonic states and coexisting patterns is quali-

tatively different from the transition between pure harmonic and coexistence states. 

Pure subharmonic patterns lose stability to coexisting states where the harmonic com-

ponent emerges globally; no localized states are observed. For w = 98, we consider 

two cases: (1) R2 < R < 5500 and (2) R > 5500 

For R2c  < R < 5500 the coexistence regime competes with pure subharmonic 

parallel stripes [Fig. 42(a)]. Slowly decreasing 6Fr at constant R a harmonic pattern 

component emerges at a well-defined location in parameter and begins to be present 

throughout the pattern [Fig. 42(b)]. Although the harmonic component is weak 

at onset, the transition is well-defined and readily detectable in Fourier space by 

looking for the initial presence of power at qH [Figs. 40(c-d)]. Typically, the emerging 

harmonic component is parallel stripes [Fig. 42(b)] which may display domains with 

several orientations. In this parameter range, the transition is well-predicted by the 

conduction marginal stability curve (Fig. 37), suggesting that the onset of large 

length scale harmonic convection is neither enhanced nor suppressed by the presence 

of short length scale subharmonic flows. Hysteresis is not experimentally observed in 

the transition between pure subharmonic flows and the coexistence regime. 

For R2 < R < 5500 the coexistence states compete with more complex pure sub-

harmonic flows. For 5500 < R < 7000, subharmonics with transverse modulations are 

found when (5Fr is large [Fig. 42(c)]. For R> 7000, the subharmonic flows are more 

disordered. As 6Fr is decreased at constant R and crosses the conduction marginal 
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Figure 42: Patterns (experiments) on either side of the harmonic-coexistence marginal 
stability curve (Pr = 0.930, w = 98.0) for R = 4982 [SFr = 3.80 x 10 -4  (a) & 
SFr = 3.69 x 10"(b)] and R = 6275 [SFr = 3.93 x 10 -4 (c) & SFr = 3.77 x 10' (d)]. 
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Figure 43: Patterns (simulations) on either side pure subharmonic-coexistence bound-
ary displaying (a) transverse modulated subharmonic stripes & cross-rolls (6Fr = 
4.373 x 10 -4 , w = 98, & R = 6800) and (b) a similar state broken into domains 
(oFr = 3.957 x 10', w = 98, & R = 6800). 
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stability boundary, the flow structure changes gradually to patterns like that shown 

in Fig. 42(d). In all cases, these states are difficult to distinguish spectrally because 

patterns contain spectral peaks with similar power content at wave numbers corre-

sponding to both qs  and q 11-  [Figs. 40(e-f)]. As a result, the onset of the coexistence 

regime from pure subharmonics is ill-defined for this range of R. 

Spectral analysis demonstrates that the gradual nature of the transition from 

pure subharmonics to coexisting patterns continues as SFr is further decreased. For 

R < 5500 the growing harmonic stripes have little effect on the subharmonic stripes as 

the two components are simply superimposed. For 5500 < R < 7000 the subharmonic 

striped base state that supports the transverse modulations gradually breaks down 

as numerous domains form [Figs. 42(c-d)]. Typically, these domains nucleate in the 

pattern interior and spread to fill the pattern with decreasing 6Fr. These patterns are 

reproduced in simulations [Fig. 43(b)]. For R> 7000 the structurally disordered state 

[Fig. 36(d)] becomes more ordered with decreasing 6Fr. Regardless of the R value 

the spectral measures display similar trends. First, relative power in ps gradually 

decreases and pH  slowly increases as the harmonic pattern becomes more significant 

[Fig. 41(a)]; eventually reaching the point where Kos  contributes < 60%. Second, qH  

[Fig. 41(b)] remains relatively fixed while o-H  decreases [Fig. 4](c)]. Simultaneously, 

qs  slowly increases while us  remains relatively fixed. These similarities indicate that 

as the pattern passes further into coexistence by decreasing (5Fr the harmonic pattern 

slowly grows and becomes more regular while the subharmonic component slowly loses 

power and increases qs . 
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5.3 Pattern Rotation 

Patterns may display solid-body constant rate rotations with the property that har-

monic and subharmonic modes always rotate in opposite directions (Fig. 59 - App. 

A). As reported with the initial experimental results for acceleration modulated 

Rayleigh-Benard convection [66], patterns possess solid-body rotations for sufficiently 

large SFr. Pure harmonic and pure subharmonic patterns can rotate in either direc-

tion at rates which slowly increase in magnitude with SFr [Fig. 59(c)], except very 

near to conduction where rotations abruptly slow as patterns weaken. Also, pure 

harmonic and pure subharmonic patterns always rotate in opposite directions during 

any given experimental trial [Figs. 59(a) & 59(b)]. Pure patterns are found to rotate 

in either direction, but once a rotation direction is selected by a pure pattern it is 

usually maintained by modes displaying the same temporal response, while modes of 

the other temporal response will rotate in the opposite direction. The rotation di-

rection displayed by pure patterns is not found to be evenly distributed between the 

two possible directions during distinct experiments. Instead, harmonic modes prefer 

the counterclockwise direction. In 84% of the 62 previously reported [66] experiments 

harmonic patterns rotated in the counterclockwise direction. Subsequent experiments 

confirm the initial observations and additionally indicate the reverse symmetry in 

rotation directions between harmonic and subharmonic modes is maintained in coex-

isting patterns. Rotation directions and rates of both pure and coexisting patterns 

are determined in the spectral domain by comparing power spectra from successive 

patterns separated by a time interval. The rotation angle is the relative rotation 

between successive spectra which maximizes the correlation between the spectra. For 
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the case of coexisting patterns the harmonic and subharmonic components are treated 

separately by filtering out the other temporal response in the frequency domain. 

Experiments suggest pattern rotation is driven by weak horizontal vibration. As 

previously reported [66] various minor modifications to the first shaking configuration 

(Sec. 3.2), including tilting the apparatus 5° off the vertical, changing the side wall 

symmetry from circular to square as well as asymmetric cooling of the top plate have 

little effect on pattern rotations. However, when the lateral vibration is on the order 

of 2% of the displacement amplitude, patterns display global rotations at dimension-

less rates of 0.1 [Fig. 59(c)]. These lateral vibrations cause maximum horizontal 

acceleration magnitudes of ti 0.1g, where g is the gravitational acceleration. By in-

cluding a rectangular drive shaft and air-bearing in the second shaker configuration 

(Sec. 3.2) the magnitude of lateral vibrations is reduced to less than 0.2% of the 

displacement amplitude and mechanical rotations of the drive shaft are eliminated. 

Correspondingly, the maximum horizontal accelerations are reduced to no more than 

about 0.02g. Sequences of images recorded over 40,000 drive oscillation cycles indi-

cate that patterns present when using the second shaker do rotate and maintain the 

reverse direction symmetry between harmonic and subharmonic modes. However, the 

dimensionless rotation rate is less than 0.001 and rotations are not discernible on the 

typical laboratory observation time scale. 

The observed patterns do not vary significantly with rotation rate. Examining 

patterns present when using both shakers indicates a dramatic reduction in the rate 

of the solid-body rotations obvious on typical laboratory time scales when using the 

first shaker does not alter any of the harmonic states. The subharmonic patterns 

are also unaffected, with the exception of the long wavelength distortion (Fig. 44) 
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Figure 44: Rotating subharmonic stripes (experiments) with a long wave length dis-
tortion. Stripes in (a) rotate clockwise (SFr = 3.99 x 10 -4 , w = 97.7, & R = 5195), 
while the stripes in (b) rotate counter-clockwise (SFr = 3.98 x 10', w = 98.0, & 
R = 5317). 

present in subharmonic parallel stripes when using the first shaker. The orientation 

of the distortion is found to change with the rotation direction (Fig. 44). When 

using the second shaker subharmonic parallel stripes [Fig. 31(b)] do not possess a 

long wavelength distortion. Similarly, the only changes to coexisting states is the 

loss of any long wavelength distortion [Fig. 42(b)], if a parallel subharmonic stripe 

component is present. 

5.4 Superlattices 

When the two wave numbers (qH  & qs) present in a coexistence pattern make rela- 

tively equal contributions, complex-ordered patterns may form. Recall from Sec. 1.1.3 
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(a) 

Figure 45: Square superlattices observed in experiments (a) and in numerical simu-
lations (b); both at Pr = 0.930. In (a) SFr = 3.88 x 10 -4 , w = 95.3, & R = 7028, 
while in (b) SFr = 3.75 x 10', w = 98, & R = 4750. 

that complex-ordered states in pattern forming systems have complex spatial struc-

ture described by relatively few spectral modes on interacting sublattices. Borrowing 

from condensed matter terminology complex-ordered patterns in other hydrodynamic 

and optical pattern forming systems have been designated as quasipatterns or super-

lattices. If the complex-ordered pattern has a unit cell which covers the plane it is a 

superlattice, while if it has a unit cell which does not fill the plane it is a quasicrystal. 

Complex-ordered patterns in acceleration modulated Rayleigh-Benard share many 

qualitative features with superlattices. In thermal convection the harmonic lattice 

typically forms a regular structure that is suggestive of a unit cell. These unit cells 

are either square (Fig. 45), stripe, rhombic, or hexagonal, all of which would ideally 

tile the plane. However, the small scale subharmonic components of these patterns re-

main dynamic and thereby the unit cells do not really repeat. Neither do the unit cells 
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generally display orientational order with their neighbors, as is the case in quasicrys-

tals. Thereby, in a strict sense complex-ordered patterns in acceleration modulated 

Rayleigh-Benard are not the same as the analogous cases in condensed matter, nor in 

order pattern forming systems. However, the designation of a superlattice does cap-

ture many of the complex-ordered patterns features in thermal convection and these 

patterns will be called superlattices when the underlying harmonic unit cell can tile 

the plane and the complex-ordered pattern is due to interacting sublattices. Perhaps 

a more appropriate name would be dynamic superlattices. 

Since the unit cell in Fig. 45 is square and spectral analysis to be presented in Sec. 

5.4.3 finds these patterns are produced by two interacting sublattices, they will be 

referred to as square superlattices. To the best of my knowledge, the complex-ordered 

patterns found in this investigation are the first to be reported in convection. 

In the remainder of this section experiments and numerics are used to investigate 

the onset of superlattices, map the superlattice region in the phase plane, identify the 

role of inversion symmetry in superlattice structure, and propose a mechanism for the 

formation of these complex-ordered states. The effect of varying the relative wave 

numbers qs/qH , by changing w , on superlattice structure is also considered briefly. 

5.4.1 Observations Near Bicriticality 

We first consider the transition to superlattices in the experiment beginning from 

the conduction state at parameter values near bicriticality and increasing R slowly 

(Fig. 46). At 6Fr slightly less than the experimentally determined bicritical point of 

Pr = 0.930, w = 94.9, 6Fr2, = 3.91 x 10 -4 , & R = 4640, onset occurs to pure reg-

ular harmonic hexagons. Slowly increasing R small localized regions of subharmonic 
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Figure 46: Patterns observed passing from conduction by slowly increasing R at 
SFr < SFr2e . Corresponding parameters are: (a) SFr = 3.89x10 -4 , w = 95.0, & 
R = 4780, (b) SFr = 3.88x10-4 , w = 95.1, & R = 4910, (c) SFr = 3.88x10 -4 , 
w = 95.0, & R = 5390, and (d) SFr = 3.73x10 -4 , w = 96.7, & R = 6270. 
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stripes (R 4780) occur on the harmonic hexagons [Fig. 46(a)]. With increasing R, 

the localized patches of subharmonic stripes begin to appear throughout the pattern 

(R 4910) superimposed on a mixed harmonic hexagon-stripe state [Fig. 46(b)]. 

Moving further into the coexistence parameter region, harmonic hexagons become 

less pronounced as domains of locally hexagonal, square and rhombic symmetries 

begin to form [Fig. 46(c)] [66]. Eventually (R > 6280), the harmonic component 

displays only domains of locally square symmetry and square superlattices begin to 

form [Fig. 46(d)]. 

Numerical simulations of the Oberbeck-Boussinesq equations demonstrate that 

the superlattice patterns can arise very near the bicritical point. With SFr = SFr2e , 

square superlattices are found to bifurcate directly from the conduction state at R 

R2c. Both harmonic and subharmonic modes contain equal spectral power, which 

increases continuously from zero as V R — R 2c , i.e., the square superlattices bifurcate 

supercritically from conduction. As R increases, the range of SFr where square 

superlattices are attracting becomes wider [Fig. 47(b)]. These numerical solutions 

find parallel stripe patterns at both pure harmonic and pure subharmonic onset in the 

vicinity of the bicritical point. A second type of superlattice (stripe superlattices - Fig. 

48) arises for increasing R near the bicritical point with SFr < SFr2, [Fig. 47(b)]. 

The stripe superlattices also result from a supercritical bifurcation of subharmonics, 

this time from the base state of parallel harmonic stripes. Stripe superlattices are 

composed of a harmonic sublattice of parallel stripes and subharmonic stripes of two 

orientations. Stripe superlattices are found to be bistable with square superlattices 

over a relatively narrow parameter range [Fig. 47(b)]. 
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Breaking of the Boussinesq symmetry in the experiments precludes the observa-

tion of square superlattices near the bicritical point in the laboratory. Physically, 

the significant variation of fluid properties due to large AT 17°C near bicriticality 

is expected to lead to observable non-Boussinesq effects such as the appearance of 

hexagons near onset [Fig. 49(a)]. Experiments relatively close to bicriticality find 

domains of hexagons coexisting with domains of squares and rhombuses. Numerics 

that account for temperature dependent non-Boussinesq effects confirm experimental 

observations and indicate hexagons form throughout the harmonic component suf-

ficiently near to bicriticality [Fig. 49(b)]. The hexagonal superlattices [Fig. 49(b)] 

are only observed numerically. In the experiments either the harmonic domain con-

tains square and rhombic regions or the subharmonics remain localized on a regular 

harmonic hexagonal lattice. The difference seems due to experimental resolution and 

the hexagon superlattices, as well as the stripe superlattices, existing over relatively 

narrow parameter ranges. 

Interestingly, hexagons in coexistence patterns may contain cold and warm cen-

ters simultaneously [Fig. 49(b)]. This unexpected hexagon characteristic is also 

experimentally observed near pure harmonic onset in the vicinity of the bicritical 

point. Since the understanding of hexagons in classical Rayleigh-Benard predicts on-

set hexagons have a flow direction determined by the fluid properties through the sign 

of Busse's non-Boussinesq parameter [72] it is certainly surprising to find hexagons 

of both directions mixed together. This may be an effect of modulation, where the 

velocity fields slow down during a part of each drive cycle. The current experiments 

showing both up and down hexagons tend to be dominated by flows in one direction 

with the hexagons of the other orientation occurring at the domain boundaries or 
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Figure 47: Phase planes mapped (a) experimentally and by (b) Boussinesq numerics. 
The dotted region in (a) is the parameter range shown in (b). Experimentally deter-
mined square superlattice (I) and mixed harmonic cellular symmetry patterns (•) 
boundaries are shown in (a). Locations of square superlattices (0) and stripe super-
lattices (A) in Boussinesq numerics are shown in (b). Square superlattice boundaries 
from non-Boussinesq experiments are compared (a) with boundaries found in Boussi-
nesq numerics at R 6300. 

near the side walls. 

5.4.2 Observations Away From Bicriticality 

Violations of the Boussinesq symmetry have a decreasing influence on the coexistence 

planform as the experiment moves further into the coexistence regime. Increasing R 

while slowly decreasing SFr to remain in patterns with relatively equal amounts of 

power in both harmonic and subharmonic modes (p H  ps ) experiments indicate 

the hexagonal domains decrease in size. For R> 6280 harmonic hexagonal domains 
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Figure 48: Numerical solutions find stripe superlattices (6Fr = 3.732 x 10-4 , w = 98, 
& R = 4794) near the bicritical point. 
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Figure 49: Coexistence patterns close to bicriticality display hexagons in the harmonic 
component due to non-Boussinesq effects in both (a) experiments (SFr = 3.64 x 10', 
w = 98.1, & R = 4983) and (b) numerics (SFr = 3.75 x 10', w = 98, & R = 4750) 

127 



in the experiments are no longer present, as the harmonic component becomes dom-

inated by locally square domains [Fig. 46(d)]. Continuing to increase R the domains 

of squares will form a single domain as regular square superlattices [Fig. 45(a)] ap-

pear. Square superlattices persist over the SFr range [Fig. 47(a)] where p" 

[Fig. 41(a)] for the entire experimentally accessible range in R (R < 9300). Inver-

sion symmetric numerical simulations find square superlattices are attracting over a 

widening range of 6Fr moving away from bicriticality by increasing R [Fig. 47(b)]. 

For R > 6280 Boussinesq numerics agree with non-Boussinesq experiments for the 

parameter range of attracting square superlattices [Fig. 47(a)]. Experiments also 

indicate the relaxation time for a single domain to form is larger near the borders of 

the square superlattice parameter region. 

Experiments varying SFr (both increasing and decreasing) at fixed R are used 

to investigate the coexistence region. These experiments indicate the coexistence 

patterns may be divided into three distinct classes based on the magnitudes of pH 

and pS . The first class, already discussed in Sec. 5.2.1, is dominated by the harmonic 

component (pH  > 60%) and is found at smaller SFr in the coexistence region. The 

second class of coexistence patterns, introduced in Sec. 5.2.2, is dominated by the 

subharmonic component (p s  > 60%) and occur at relatively large SFr. For both 

classes of states dominated by a single temporal response patterns change slowly 

as 6Fr is varied. Correspondingly, the spectral quantities of these patterns (Fig. 

41) remain relatively constant. The third class of patterns have pH  -.% gY 9  and are 

found between the first two classes in parameter space near the middle in SFr of 

the coexistence region. The third class of patterns are complex-ordered and the 

transitions between the first two classes and the third are abrupt. Increasing 6Fr at 
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fixed R harmonic dominated patterns (first class) abruptly begin to show significant 

subharmonic contribution. Correspondingly, the harmonic planform separates into 

domains as VI  and cl-H  become smaller. The emerging subharmonics display the 

largest TS  value for a given R within the coexistence region. With a small increase 

in SFr square superlattices begin to form. Comparing to other coexistence patterns 

observed at a given R the square superlattices have the characteristics the qH  and 

o-H  reach minimal values and qS  is near its maximum value. The wave number 

characteristics can be described by qS/q H  [Fig. 41(d)], which is significantly larger 

for square superlattices than for patterns dominated by the subharmonic component. 

Increasing SFr at fixed R to pass out of the square superlattice region there is again an 

abrupt boundary after which the subharmonic component is dominant. The boundary 

between superlattices and class 2 coexistence patterns is characterized by an increase 

in ps, increase in qH , decrease in q s  and an increase in aH  (Fig. 41). For the 

particular experiment shown in Fig. 41 the increase in ps is somewhat masked by 

the emergence of transverse modulations with q ti VI  (Sec. 5.2.2). Thereby, pH  has 

a contribution for subharmonic transverse modulations that increases the magnitude 

of 01/ . For smaller R, where the transverse modulations do not arise (Fig. 32), the 

change in the magnitudes of pH  & vs  is more substantial (Fig. 60(e) - App. A). 

Hysteresis is not observed at any of the coexistence boundaries while varying SFr at 

constant R. 

Numerical solutions augment experimental information about the square superlat-

tices. The imaging technique employed in these experiments (shadowgraphy) yields 

qualitative temperature field information. While techniques have been developed to 

gain quantitative temperature field information from a shadowgraph, the qualitative 
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Figure 50: Temperature field (grayscale) and planar velocity field (arrows) in a square 
superlattice mid plane at w = 98 observed in simulations. 
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Figure 51: Temperature field (grayscale) and vertical velocity field (arrows) compo-
nent corresponding to the planar field shown in Fig. 50. 
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description is sufficient for these purposes. However, experiments cannot yield any 

information about the velocity fields since no techniques for visualizing velocity fields 

in compressed gases currently exist. Since the agreement between experiments and 

simulations is so good, it seems reasonable to use simulations to gain information 

about the velocity fields in these square superlattices. 

Simulations indicate the spatial temperature field complexities, not surprisingly, 

correspond to a complex velocity field. To demonstrate this, the temperature field at 

the mid-plane in height (z = 0) is presented as a grayscale overlayed with the planar 

velocity field (vx  & vy ) in Fig. 50 while the vertical component of the velocity field 

(vs ) overlays the same temperature field in Fig. 51. In both figures the velocity field 

and direction is shown by arrows. Pattern segments approximately two harmonic 

wave lengths on a side taken from the bulk of the pattern (away from the side-walls) 

are shown in these figures. Warmer fluid is dark, while cooler fluid is white in Figs. 50 

and 51. The square superlattice temperature and velocity fields on this scale support 

the notion that these are really a sort of dynamical superlattice. 

5.4.3 Resonant Tetrads 

Power spectra for the superlattice patterns demonstrate that the complex spatial 

structure of these states are described by a few spectral modes. Square superlattices 

(Fig. 45) have spectra with twelve dominant peaks at two distinct wave numbers 

( Ix 	qs\ .  ) The spatial backbone square sublattice corresponds to the four peaks 

+(q', 'In [Fig. 52(a)], each separated by 90° at q = qH. These peaks display a har- 

monic temporal response. The eight peaks at the larger q = qs , [±(cfis:, 	cd)] 

are due to the spatial stars in Fig. 45(a) and lie on a centered square in the spectral 
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Figure 52: Power spectra for (a) the square superlattice in Fig. 45(a) (experiment) 
and (b) the stripe superlattice shown in Fig. 48 (simulation). 

domain. These peaks display a subharmonic temporal response and form the sub-

harmonic sublattice. Subharmonic peaks may translate dynamically a slight distance 

along the spectral square which they form under the constraint that the separation 

between a pair of peaks remains constant. In contrast, for the stripe superlattices 

the power spectra have only six dominant peaks [Fig. 52(b)]. The backbone spa-

tial stripes correspond to the two peaks at +cif/ at the smaller q = qH . The other 

four peaks [±(cf?,4)] occur in pairs, display subharmonic temporal response and 

represent the subharmonic sublattice. 

Interactions between the modes from the harmonic and subharmonic sublattices 

are found to always satisfy resonance conditions. Spectral changes made as the exper-

iment passes into the square superlattice parameter regime are suggestive of interac-

tions between the harmonic and subharmonic sublattices. In Sec. 5.4.2 it was shown 
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that power abruptly moves between the sublattices such that pH 2-- yes , as well as qs  

q H  reaching maximal separation (Fig. 41) as square superlattices form. During the 

transition to square superlattices the power, which is typically distributed in bands 

about qH and qs , moves to a few discrete spectral peaks on the two sublattices. These 

peaks will form the vertices of parallelograms between two of the harmonic and two 

of the subharmonic peaks [Fig. 52(a)]. Existence of these parallelograms suggests the 

four wave resonance (resonant tetrad) conditions: 

±(er - e) = 	- 4) and 

±(q 	±(4 - 4). 	 (37) 

Square superlattices in both experiments and numerics always satisfy these resonant 

tetrad [Eqs. (37)] conditions. In the vicinity of the bicritical point the parallelograms 

formed by the modes become rectangles. Further from onset, translations of the 

subharmonic peaks along the straight lines allows the IciN (i = 1...4) to take on 

different values for all i, while always satisfying Eqs. (37). Experiments indicate 

that with increasing R square superlattices are composed of relatively constant qH 

(0.91q2 < q H  < 0.944) and that qs  decreases monotonically from 0.92g2 at R =- 

6280 to 0.77g2 at R = 8920. A four wave resonance condition also applies for the 

stripe superlattices. For the stripe superlattices the condition is again between four 

modes and given by 

+2cifi  = +(oils  — 4). 	 (38) 

The resonance condition for stripe superlattices is a resonant tetrad between between 

modes of two different wave numbers and it contains a 'self-interaction' term for the 

harmonic mode (2q11 ). 
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Figure 53: The temporal variation of linear eigenvectors multiplied with adjusted 
amplitude factors A = 0.0382, B = 0.0108 (see text) at SFr = 3.732 x 10 -4 , R = 4790 
for the harmonic (upper curve) and subharmonic (lower curve) modes, respectively. 
Comparison is made with the numerical amplitudes of the Fourier modes at cif .' (+) 
and c0 (0), respectively, for the square superlattice mid plane temperature field 
T(x, t) in units of AT. 

The noted prominence of the twelve modes satisfying resonant tetrad conditions 

[Eq. (37)] suggests the square superlattice patterns may be represented using the 

ansatz of an eigenmode expansion in the spirit of a weakly nonlinear analysis. The 

pattern field T(x, t), which is the shadowgraph intensity or mid plane temperature, 

may be defined as 

2  
T(x, t) = R{VH (t) 	 • x)} 

J._=1 

R{V s (t) 
J 	 j 

exp (ice • x)}, (39) 

where x is the horizontal coordinate parallel to the plane of the fluid layer. The time 

dependence of the harmonic and subharmonic eigenmodes [V H (t) & V s (t)] is given 

by Floquet's theorem - V H,s  = R{exp(itH>st) E77 0  enkr,s exp(incut)}, normalized such 

that IcoH' s 1 = 1 - with Floquet exponents ft' = 0 for harmonic modes and ft S  = 12 

for subharmonic modes. Since the mode V H  is essentially sinusoidal about nonzero 
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mean (Fig. 53), only the first two terms (n = 0 & n = 1) need to be retained. 

In contrast, V s  requires several higher harmonics. To represent the snapshot of a 

regular square superlattice [Fig. 45(b)], where the spectral peaks form rectangles, 

only two constant real amplitudes A and B with A = AH = B = Al = 

= A3 = A54' are needed in Eq. (39). The amplitudes of the dominant Fourier 

modes in Eq. (39), which are directly available from the numerical temperature field, 

exhibit time dependence that is very well represented by AV H (t) and BV s (t) with 

adjusted amplitudes A, B (Fig. 53). The stripe superlattice pattern (Fig. 48) can 

be described analogously by Eq. (39) with one harmonic amplitude A H  and two 

subharmonic amplitudes An, where J1 35  = A2 = iB. 

Inversion symmetry (both Boussinesq and subharmonic time translation) plays an 

essential role in both the temporal dependence of the eigenmodes and the magnitudes 

of amplitudes in Eq. (39). The subharmonic eigenmodes (V s ), regardless of the 

presence of Boussinesq symmetry, are subject to the temporal inversion symmetry of 

time translation. Higher harmonics of V s  must satisfy Vs (t+27/w) = — Vs (t). In the 

non-Boussinesq experiments and numerics quadratic couplings between the harmonic 

modes are allowed. Resonant triads in the harmonic component are responsible for the 

harmonic hexagons observed in the vicinity of the bicritical point and for delaying the 

onset of square superlattices. In the Boussinesq numerics inversion symmetry rules 

out quadratic couplings and requires those amplitudes to be zero. At cubic order the 

equation describing Al/  has the common terms — Aff IA / 1 2  (j = 1, 2) and AH435 1 2  

(j =1...4) existing with different coupling constants. However, according to Eq. 

(37) additional resonant coupling terms ti  gARAD*, (4) * A3 (A4) *  play a crucial 

role. It should be noted that two phases for the four subharmonic amplitudes remain 

136 



' • 	I t• • 
• I s 

• 
• • 

k• • /111)11  I r .1.• 
1 I IF44 

* 	.1111F. 
.4"401IFF:44  * 	, 

. . 	* 
b) 

Figure 54: Superlattices (numerical) in the vicinity of the bicritical points at other w 
values: (a)w = 50 and (b) w = 300. 

arbitrary within the amplitude equations up to cubic order. To fix them, higher 

order resonances, which are automatically included in the full Oberbeck-Boussinesq 

equations [Eqs. (13)], come into play. The analogous coupled amplitude equations 

for the stripe superlattice pattern contain a resonant coupling N (A H  )* IS (AD * . 

5.4.4 Other Frequencies 

Interactions between modes at distinct wave numbers (qH  & qs ) determine the spatial 

structure of the superlattices. As shown experimentally and numerically the super-

lattices in acceleration modulated Rayleigh-Benard convection must satisfy resonant 

tetrad conditions (Sec. 5.4.3). These conditions exist between harmonic and sub-

harmonic modes which are at distinct wave numbers, q H  and qs , respectively. By 
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changing one of the characteristic wave numbers the modes will have to adjust loca-

tions to satisfy the appropriate resonance condition. As the modes move in Fourier 

space the structure of the corresponding sublattice and hence the composite super-

lattice will change. The wave number ratio qs/q H  serves as a convenient description 

for the relative separation between harmonic and subharmonic modes. For square 

superlattices at w = 98.0, qs < 2.9 [Fig. 41(d)]. 

Since q H  is relatively independent of w and qs  is strongly dependent on w, if 

superlattices exist at other w values (besides the considered w Pe,  100) they should 

display different structure than superlattices reported to this point. To look for super-

lattices at other w, simulations are performed at several w values and appropriately 

chosen SFr = 8Fr2e , R > R2c . Superlattices are found at w = 50 composed of a 

harmonic square sublattice and a subharmonic sublattice that is described by eight 

subharmonic peaks qualitatively similar to the square superlattice power spectrum at 

w = 98.0. In this case, the wave number ratio is qs/q H  = 2.24. At w = 300 numerics 

again find superlattices [Fig. 54(b)], this time with a much larger qs/qH  = 5.42. 

Again, the harmonic sublattice displays regular square symmetry. At this larger cu 

the subharmonic sublattice is composed of stripes which spatially are present along 

the harmonic square edges. 

For verification of numerical predictions of changes to superlattice structure with 

w, preliminary experiments are performed at w = 50.4. Fig. 55(a) displays the 

rhombic superlattice found in experiments. The harmonic sublattice is rhombic and 

well-defined by four spectral peaks [Fig. 55(b)] at the smaller populated wave num-

ber (q H ). For this superlattice the subharmonic sublattice is also defined by four 

spectral peaks with power spread along linear structures in a manner similar to the 
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Figure 55: Superlattice (experiment) at w = 50 (a) and its power spectrum (b). 

experimental observations for square superlattices. However, the superlattices found 

in experiments at w = 50.4 are not the ones predicted by numerics for w = 50 [Fig. 

54(a)]. The harmonic sublattice in simulations is square, while that in experiments 

is rhombic. More substantially, the numerical pattern is described by four pairs of 

Fourier peaks, while the experimental pattern has only two pairs of stimulated subhar-

monic modes. Both experimental and numerical superlattices satisfy the appropriate 

resonant tetrad conditions. Due to the relatively large displacement amplitude re-

quired to reach the vicinity of the bicritical point at w 50 (SFr ti 8.9 x 10') these 

experiments require the enhanced range of the second experimental apparatus to be 

performed. 

Initial experiments indicate the essential aspects of purely harmonic and purely 

subharmonic flows at w ti 50 are similar to those at w < 100. Shown in Fig. 56(a) is 

an example of spiral defect chaos in a purely harmonic flow at w = 50.4. It is quite 
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Figure 56: Patterns (experiment) at Pr = 0.928, R = 5180, w = 50.4 of (a) purely 
harmonic spiral defect chaos (6Fr = 8.08 x 10 -4 ) and (b) purely subharmonic stripes 
with transverse modulation (6Fr = 9.27 x 10 -4 ). 

similar in nature to the spiral defect chaos patterns found at w 	100 [Figs. 33(c), 

35(d) & 57(a)]. Similarly, the example of transversely modulated purely subharmonic 

stripes in Fig. 56(b) can be compared to those observed at w 2-- 100 [Fig. 36(c)]. 

5.5 Discussion 

Moving away from onset into the harmonic parameter regime experiments were used 

to investigate stable patterns and transitions between these states. Pure harmonic 

patterns were found to closely resemble those known to exist in classical Rayleigh-

Benard convection. These states include the complex single q patterns typical of 

spiral defect chaos. As discussed, the harmonic pattern transition from an ordered 

state to spiral defect chaos as SFr is decreased is remarkably similar to the transition 
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which occurs as R is increased in classical Rayleigh-Benard convection. In both cases, 

the fluid is moving away from the conduction stability curve, so it seems reasonable 

that the transitions are similar. Thereby, acceleration modulated Rayleigh-Benard 

convection allows this transition to be examined through two distinct tuning parame-

ters (SFr & R). In cases when the side wall influence was relatively small, transitions 

from stripes and targets to spiral defect chaos were found to be qualitatively the same 

as those described in the initial report of spiral defect chaos [69]. For large R standard 

spiral defect chaos gives way to patterns with numerous disconnected islands without 

spirals, these too become more ordered with increasing SFr. 

Experimental observations made as the fluid moves away from subharmonic onset 

at relatively larger SFr were discussed. Moving into purely subharmonic parameter 

regime the typical types of defects emerging on the base stripes were presented. Over a 

parameter range, subharmonic stripes were found to possess a transverse modulation 

propagating down the stripes. Spatial periodicity of these modulations was shown 

to be close to that displayed by harmonic patterns q". For sufficiently large SFr 

and R subharmonic patterns were found to display no discernible spatial structure. 

Approximate phase-plane boundaries for onset of both transverse modulation and the 

loss of structure were presented. 

Next, the transition from pure harmonic to pure subharmonic convection was 

considered for R > R2c  . This transition was found to be gradual as the experiment 

passed through a parameter region where harmonic and subharmonic patterns co-

exist, except near the midpoint in SFr where values of KJ' & ps  abruptly change 

as the contributions to the composite pattern from harmonic and subharmonic com-

ponents quickly vary. Coexistence region parameter boundaries were experimentally 
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determined and found to track the marginal stability curves for conduction. The tran-

sition from pure harmonic flows to coexistence occurs as small, localized patches of 

subharmonic stripes emerge centered about harmonic defects. In contrast, the tran-

sition from pure subharmonic flow to coexistence (for R < 5500) occurs as harmonic 

stripes gradually emerge throughout the convection cell. Several interesting two scale 

coexistence patterns were presented. Decomposing coexistence patterns showed that 

even in coexistence the harmonic and subharmonic components rotate in opposite 

directions. 

Towards the coexistence region mid point in 6Fr, experiments found complex-

ordered patterns for the first time in a convection system. Planforms present in 

both harmonic and subharmonic components of the complex-ordered states are not 

found in pure harmonic or subharmonic patterns, indicating interactions between the 

stimulated wave numbers are the mechanism for superlattice formation. As superlat-

tices form the power present in harmonic and subharmonic sublattices is nearly equal 

ps ), the values of q H  & qS  shift apart so qs/qH 	2.9 and qH & qs become 

well-defined (minimal a). 

Structure in the stimulated spectral modes of square superlattices suggested reso-

nant tetrads between constituent sublattices were responsible for superlattice forma-

tion. This resonance mechanism is qualitatively different than resonant triads used 

to explain the recent observations of quasipatterns and superlattices in other pat-

tern forming systems. All the observed superlattices were found to satisfy four wave 

conditions involving two harmonic and two subharmonic spectral modes. Resonant 

tetrads were found to be consistent with system symmetries of mid plane reflection 

(Boussinesq) and subharmonic time translation. 
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Numerical solutions of the Oberbeck-Boussinesq Equations [Eqs. (13)] were found 

to quantitatively reproduce experimental results except in the vicinity of the bicritical 

point, where non-Boussinesq effects are important. Both the structure and parameter 

range of square superlattices were found to quantitatively agree with experiments for 

R > 6280. Numerics also found square superlattices persisted over a narrowing range 

in SFr with decreasing R for R < 6280. In contrast, experiments found coexistence 

patterns whose harmonic sublattice was composed of domains of hexagons, rhombuses 

and squares [Fig. 60(a) — App. A]. 

This disagreement between experiments and numerics was addressed by slowly 

increasing R at SFr < SFr2, in the laboratory. Regular harmonic hexagons observed 

near the bicritical point for SFr < 6Fr2, indicated the Boussinesq symmetry is not 

valid for the experimental conditions used. While Boussinesq hexagons do exist, only 

harmonic stripes were observed over these parameters in simulations. Together these 

observations indicate the mid plane reflection symmetry is not present, allowing for 

resonant triads between harmonic modes. Time translation symmetry still excludes 

resonant triads among the subharmonic modes. Resonant triads correspond to second 

order terms, while resonant tetrads correspond to third order terms in an amplitude 

equation. The disagreement between experiments and numerics in the vicinity of 

bicriticality is due to the Boussinesq symmetry, which is present in the numerics and 

not in the experiments. This lack of reflection symmetry also explains the domains of 

hexagons that were observed coexisting with stripes or targets near harmonic onset. 

However, the observations of mixed up and down hexagons simultaneously present in 

pure harmonic and coexistence patterns in experiments and simulations is potentially 

a fruitful line of investigation. It is worth noting that mixed hexagonal states have not 
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been reported in thermally modulated Rayleigh-Renard, although Meyers, Cannell, 

Ahlers [39) did discuss the effects of reversing velocity fields on hexagons in thermally 

modulated convection in terms of the effects of fluctuations when the velocity is 

suppressed. It is also possible that the mixed up and down hexagons are due to 

the imaging technique itself. Numerical investigations of this point are currently 

underway. However, the simulations are time consuming, the system is very close to 

onset, and to this point there is no conclusive evidence either way from the numerics. 

Numerical solutions augment experimental findings by allowing the investigation 

of R < 6280 in the presence of Boussinesq symmetry. These simulations indicate 

square superlattices persist over a narrowing SFr range with decreasing R2c  all the 

way down to R2c  0. At the bicritical point square superlattices were found to 

emerge from conduction due to a supercritical bifurcation. Numerics found an ad-

ditional superlattice with different spectral structure over a narrow parameter range 

near the bicritical point. This stripe superlattice was not observed in experiments, 

although it is predicted to exist in the presence of Boussinesq symmetry over a pa-

rameter range where this symmetry is violated in the experiments. Numerics indi-

cate stripe superlattices bifurcate supercritically from a harmonic parallel stripe base 

state. The appropriate resonant tetrad condition for stripe superlattices included a 

self-interaction term. 

The dependence of qK and qs  on modulation parameters (w, in particular) in-

dicates the modulation parameters may be used to tune the superlattice structure 

by changing qs/qH . Preliminary experimental and numerical results for w 50 and 

numerical results for w = 300 confirmed these expectations. Superlattices found at 

these w values were presented. Disagreements between numerics and experiments 
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about superlattice structure at w ti 50 are not disappointing, rather seem minor 

and indicate a rich diversity of complex-ordered patterns are present. Below w ti 36 

simulations indicate superlattices are no longer attractors. 

Numerous expected and unexpected results have been found in this first experi-

mental investigation of acceleration modulated Rayleigh-Benard convection. With the 

improved dynamical range of the second experimental apparatus a much wider range 

of parameters are now accessible. Additionally, the unexpected rotations present in 

the first experimental device are reduced by at least an order of magnitude when us-

ing the second device. Patterns and transitions in purely subharmonic flows present 

several interesting questions: what is the nature of the transverse modulations, what 

is the nature of and temporal components of flows when the spatial structure breaks 

down and do other temporal resonances become accessible? Additionally, how do 

these patterns change with w? Is there something like a dispersion relation in Faraday 

wave experiments for qs  for Pr ti 1? Investigating the various types of superlattices 

at different w seems fruitful and remains to be well explored. Particularly, for w < 36 

numerics indicate superlattices are not found. Is there some type of transition as w 

passes through w ti 36 that allows superlattices to form? Do experiments confirm 

numerical results for superlattices bifurcating supercritically from conduction in the 

presence of Boussinesq symmetry? While not covered here, many interesting dynam-

ics might be expected for this system with heating from above (T 1  > T2 ), where 

again bicritical points have been predicted. This case is treated numerically in the 

dissertation of Oliver Brausch [28]. Prior to the experiments finding coexistence and 

superlattices, numerical investigations never knew to look for complex-ordered states. 

It seems quite reasonable that these experiments may encourage a reexamination of 
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acceleration modulated Rayleigh-Benard convection as a vehicle for investigating the 

effects of modulation on hydrodynamics and that future investigations will make un-

expected discoveries. 
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APPENDIX A 

First Reprint 

Appendix A is a reprint of the first published Letter describing initial experimental 

results for acceleration modulated Rayleigh-Benard convection. The experimental 

apparatus without an air-bearing was used in attaining all of these results. Notably, 

pattern rotations are reported which were later (see 5.3) found to be be sensitive to 

the magnitude of the lateral vibrations present in shaking. This Letter appeared in 

Physical Review Letters, volume 84 on pages 87-90 in 2000. 

Rayleigh-Benard Convection in a Vertically Oscillated Fluid Layer 

Jeffrey L. Rogers and Michael F. Schatz 

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 - 0430 

Jonathan L. Bougie and Jack B. Swift 

Department of Physics and Center for Nonlinear Dynamics, University of Texas, Austin, 

Texas 78712 

We report on the first quantitative observations of convection in a fluid layer 

driven by both heating from below and vertical sinusoidal oscillation. Just above 

onset, convection patterns are modulated either harmonically or subharmonically to 

the drive frequency. Single-frequency patterns exhibit nearly solid-body rotations 
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with harmonic and subharmonic states always rotating in opposite directions. Flows 

with both harmonic and subharmonic responses are found near a codimension two 

point, yielding novel coexisting patterns with symmetries not found in either single-

frequency states. Predictions from linear stability analysis of the onset Rayleigh and 

wave numbers compare well with experiment and phase boundaries for coexisting 

patterns track single-frequency marginal stability curves. 

PACS numbers: 47.54.+r, 47.20.-k, 47.20.Lz, 47.20.Bp 

Characterizing pattern formation is a fundamental problem in the study of nonequi-

librium systems. Wavenumber selection mechanisms provide one useful means for 

identifying common pattern forming behaviors in diverse physical systems [73]. The 

pattern wavenumber q may be selected by geometrical constraints; a canonical ex-

ample of geometry-induced patterns is found in Rayleigh-Benard convection where 

the pattern length scale is governed by the fluid layer thickness d [7]. By contrast, 

the selected q may depend on an externally imposed frequency w in systems sub-

jected to spatially uniform, time-periodic oscillation [73]; a common example of these 

dispersion-induced patterns is the parametric excitation of surface waves (Faraday 

waves) in an open container of fluid [7]. Pattern selection by these generic mech-

anisms also arises in nonhydrodynamic systems; geometry-induced patterns occur 

in the buckling instability of thin plates [74], while dispersion-induced patterns are 

generated by optical waves in a fiber laser [75] and crystallization waves in 'He [76]. 

We report the first experimental observations of both geometry-induced (onset q 

weakly dependent on w) and dispersion-induced (onset q strongly dependent on w) 

patterns in a single system: a fluid layer that is both heated from below and vertically 
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Figure 57: Convection patterns visualized using shadowgraphy and characterized 
by four dimensionless quantities: Prandtl number Pr = = 0.93, driving frequency 

2 

(1) —2 27rf = 98, displacement amplitude 6 = b--7,6 and Rayleigh number R = "(13°T  gd 	 Un 
with the kinematic viscosity v , thermal diffusivity k, thermal expansion coefficient a, 
forcing frequency f (Hz), amplitude 6' (cm) and gravitational acceleration g = 980 
(722 ). (a) H spiral defect chaos (6 = 1.76x10 -4 , R = 3198). (b) coexisting H rolls 
and hexagons (6 = 3.74x10-4 , R = 4216). (c) S rolls near onset (6 = 4.26x10 -4 , 
R = 3958). (d) S rolls (6 = 4.05x10 -4 , R = 4990). (e) H rolls with localized 
domains of S rolls (6 = 3.76x10 -4 , R = 4962). (f) S rolls containing grain boundaries 
overlaying a weak pattern of H rolls and cells (6 = 3.64x10 -4 , R = 5424). 
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oscillated sinusoidally. Fluid motion in this system requires a thermally-induced 

density variation, as characterized by the Rayleigh number R (Fig. 57). When 

the drive amplitude 6 or oscillation frequency w are small, we observe fluid motion 

modulated at w [harmonic (H)] and geometry-induced spatial structure [Fig. 57(a)] 

reminiscent of standard Rayleigh-Benard convection [69]. For sufficiently large 6 or 

w, flows arise with modulation at w/2 [subharmonic (S)], characteristic of dispersion-

induced Faraday wave patterns. Our measurements for the onset of these patterns 

quantitatively test both stability calculations and numerical simulations performed 

over the past thirty years [35, 77, 50, 38, 52, 53, 78]. Patterns exhibit nearly solid-

body rotation over a wide parameter range with H and S patterns always rotating 

in opposite directions. In addition, we find and characterize a region of parameter 

space where the distinct spatial and temporal scales of H and S patterns interweave 

to form complex states [Figs. 57(e) and 57(f)], including localized domains of one 

pattern embedded in the other, mode-locking, and formation of pattern symmetries 

not found in either pure state. 

Experiments are performed on a layer of CO 2  gas bounded below by a 0.6 cm-thick 

gold-coated aluminum mirror, laterally by a (3.80±0.03) cm inner diameter ring of 

filter paper and above by a 2.54 cm-thick sapphire window. Two cell depths are stud-

ied: d =(6.50 and 6.72± 0.03)x10 -2  cm, corresponding to a vertical diffusion time of 

Tv  :7=1 d2 /n---f, 2 s. Length is scaled by d and time by Tv . Thermal gradients are imposed 

across the fluid layer by heating the mirror from below and using circulating water 

to cool the window from above resulting in a vertical temperature difference (AT) 

controlled to within ±0.01° C. The fluid layer is vertically vibrated sinusoidally by a 

hydraulic piston under closed-loop control rendering oscillations with less than 4% of 
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Figure 58: Phase diagram and comparison of linear stability predictions to experi-
ments at w = 98. The phase diagram (a) contains regions of conduction, convection 
with H (w) and S (w/2) modulations as well as coexisting H-S patterns. Marginal 
stability curves computed for the conduction state subjected to H (solid line) and S 
(dashed) perturbations agree with the measured values of R, (a) and qc  (b) at the 
onset of H (II]) and S (A) convection. The measured transition to coexisting patterns 
from pure H (0) and S (o) states is compared to the marginal stability predictions for 
conduction. The maximum displacement (6 = 5x10 -4) corresponds to an acceleration 
of 5g. 

the total amplitude in higher harmonics. Patterns are visualized using shadowgraphy 

and recorded by a digital image acquisition system. To determine H or S amplitude 

modulation pattern images are captured at ,-- 20 Hz (twice the drive frequency) while 

long-time dynamics are recorded at ti  0.5 Hz using a shutter synchronized with the 

piston motion. For 6 = 0 (no oscillations), the conductive state loses stability to 

roll patterns, suggesting that non-Boussinesq effects are weak and occur below the 

limit of our temperature resolution. These observations are consistent with our cal-

culations using a variational model described by previous authors[72, 79, 62], which 

demonstrate rolls are the globally stable state for R only ti  0.3% larger than the 

unmodulated critical value, R c°  = 1708. Patterns are explored with w and Pr held 

constant (Fig. 57) while increasing and decreasing 6 at various fixed values of R. 
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H convection occurs for small S [Fig. 58(a)]. Without oscillations (S = 0) spiral 

defect chaos arises for R > 2500 in agreement with previous experiments [69]. With 

oscillations (S > 0 at fixed R), spiral defect chaos modulated at (.2) persists for a 

significant range in S (e.g., S < 3.30x10-4  at R = 4840). With increasing S the number 

of spiral defects decrease as more regular states whose morphology depends on R 

emerge. For 2500 < R < 3900 these emerging patterns are typically multi-arm spirals 

which reduce in arm number, eventually becoming targets as the conduction state is 

approached. At larger R (3900 < R < 5500) spiral defect chaos becomes a pattern of 

nearly parallel rolls tending to terminate perpendicular to the sidewalls and possessing 

several foci at the boundaries; the number of foci and curvature of the associated rolls 

decreases with increasing S. The transition with increasing S from spiral defect chaos 

to parallel rolls is reminiscent of the well-studied transition in unmodulated Rayleigh-

Benard convection for decreasing R [65]. For 3100 < R < 4560 uniform parallel rolls 

or targets lose stability with increasing S as domains of hexagons form [Fig. 1(b)]. 

These states of hexagons and rolls or targets occur only for a narrow range 6x10 -6 ) 

of S before losing stability to conduction with a small additional increase in 6. Within 

the experimental resolution in S 2x10 -6 ) no hysteresis is observed in the transition 

between the hexagon-roll states and conduction. The nonhysteretic transition and 

morphology of these patterns are consistent with other modulated Rayleigh-Benard 

experiments involving time-periodic driving of the bottom plate temperature [39]. 

S convection is observed for sufficiently large 6 [Fig. 58(a)]. The onset of S 

patterns occurs as a uniform patch of rolls; no hysteresis or hexagons are observed, 

consistent with the S temporal symmetry that excludes three wave interactions [7]. 
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Figure 59: H ( ❑) and S (A) patterns rotate in opposite directions. (a) At 6 = 
3.47x10-4  the motion of a single H roll (dashed line) is followed in time at intervals 
of 11.3 Tv . (b) At S = 4.53x10-4  the motion of a S disclination (bright white region) 
is followed in time at intervals of 15.0 Ty . (c) The dimensionless rotation rate versus 
6 for R = 3920 and w = 98. 

With increasing S other roll domains form with grain boundaries at the domain inter-

sections. The roll domains merge with further increase in 6, leading to the formation 

of disclinations that may interact [Fig. 57(c)]. For sufficiently large 6, either a single 

convex disclination or, less frequently, a spiral arises centered within the convection 

cell. These patterns experience skew-varicose instabilities leading to repeated nu-

cleation of dislocations, additionally the patterns may move off-center [Fig. 59(b)]. 

With increasing S a single roll domain forms with few dislocations and a long wave-

length distortion [Fig. 57(d)]. Patterns qualitatively similar to Figure 57(d) have 

been previously observed in rotating Rayleigh-Benard convection [80]. 

Following the method described by previous investigators [52, 53] we performed 

a linear stability analysis of the conductive state. The resulting predictions for both 

critical Rayleigh numbers Re  and critical wave numbers q0  are in good agreement 

with the experimentally observed values at onset of both H and S convection (Fig. 
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58). For H convection, modulation enhances the stability of conduction (R, > Re') 

while decreasing qc  below its unmodulated value 0=3.117; consistent with previous 

modulated Rayleigh-Benard experiments [39]. In addition, for S convection R, > R,c) 

 and qc  decrease with increasing S (Fig. 58). For parameter values not studied here 

R, is predicted to drop below M [52]. 

For R > 2500 patterns undergo nearly solid-body rotation where H and S states 

rotate opposite directions (Fig. 59). For fixed R (2500 < R < 4560) and increasing S 

from zero, the onset of rotation occurs near S 2x10 -4 . Patterns deviate somewhat 

from ideal solid-body rotation because point defects and grain boundaries contin-

ually propagate within the rotating patterns. Global rotation rate increases with 

S except near the conduction boundaries where rotation slows as patterns weaken 

[Fig. 59(c)]. A given rotation direction is selected and maintained by the patterns 

throughout the duration of an experimental trial. Patterns do not equally select 

clockwise and counter-clockwise directions; in 62 separate experiments H states ro-

tated counter-clockwise in 84% of the trials. In all cases, H and S patterns rotate 

in opposite directions. Rotations are qualitatively robust against perturbations from 

tilting the apparatus N 5° off the vertical, changing the sidewalls to square symmetry 

and asymmetric cooling of the top plate. 

For R > 4560 conduction is no longer stable; instead H and S patterns compete 

and coexist over a range of S between the pure states [Fig. 58(a)]. As S is increased, 

pure H states lose stability to mixed patterns where localized patches of S rolls form 

about H defects and are advected along as the defects propagate. At slightly larger S 

[e.g., S = 3.67x10-4  in Fig. 60(e)], S rolls begin to form perpendicular to H upflows 

throughout the pattern [Fig. 57(e)]. The wavenumber of emerging S rolls (qs ) is 
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Figure 60: Coexisting H and S patterns (a) (6 = 3.62x10 -4 , w = 108 and R = 5515) 
may be decomposed by filtering in the wavenumber domain (b) to yield both H (c) 
and S (d) components; in this case, both components equal power to the wavenumber 
spectrum (b) and exhibit mode-locking of the wave numbers (-ks = 51 : 6°72  — 3.01). 

(e) The relative power contributed by H (II) and S (A) components to wavenumber 
spectra changes abruptly as a function of 6 for constant w = 98 and R = 5320. 
Vertical lines mark the measured coexistence boundaries. 
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close to the second harmonic of the H pattern wavenumber (qH ). A small change in (5 

[e.g., S = 3.69x10 -4  in Fig. 60(e)] yields states where H patterns of local hexagonal, 

square and rhombic symmetries are mixed with rolls of the S component perpen-

dicular to the cell faces [Fig. 60(a), 60(c) and 60(d)]. For these states, the H and 

S components contribute equal power to the wavenumber spectra and have mode-

locked wave numbers (qH = 3). With further small increases in S [(5 > 3.72x10 -4 

 in Fig. 60(e)], the S component dominates the power spectra and, concurrently, the 

wavenumber ratio unlocks 01  < 2.8) as qH  increases abruptly. The S component 
411 

forms domains of increasingly larger size as the H component gradually weakens [Fig. 

57(f)]. Upon crossing the phase boundary with purely S states [Fig. 58(a)] rolls with 

a long-wavelength distortion are typically observed [Fig. 57(d)]. 

The experimentally determined phase boundaries separating coexisting states 

from the pure patterns track the marginal stability curves for the conduction state 

[Fig. 58(a)]. For R > 4560, the H marginal stability curve is in nearly exact agree-

ment with the phase boundary between coexisting and pure S states. This suggests 

the S base state from which H convection bifurcates differs little from conduction in 

a spatially averaged sense. Spatial Fourier spectra support this viewpoint since the 

higher modes of S patterns cannot overlap with the smaller wavenumber H fundamen-

tal. By contrast, the experimentally determined phase boundary between coexisting 

and pure H states lies above the S marginal stability curve, suggesting that H con-

vection inhibits the onset of S convection due to wavenumber interaction. Evidence 

for this inhibitory effect is further bolstered by the observation that S convection 

first appears near H pattern defects. The amplitude of convective flow is generally 

suppressed in the cores of pattern defects [71] and, therefore, any inhibitory effect 
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of H convection on S patterns should be weaker near defects. Moreover, a previous 

stability analysis of the H base state suggests the onset of S convection is delayed by 

the presence of H convection [52]. 

These multiple length scale convection patterns differ qualitatively from coexist-

ing wavelength states in spatially separate domains observed in optical systems [26] 

as well as quasiperiodic [81] and superlattice [82, 22, 21] states reported in Faraday 

experiments. Three wave interactions (resonant triads) are responsible for multi-scale 

Faraday patterns; it seems doubtful resonant triads are important in the convection 

patterns described here due to the S temporal symmetry and large difference be-

tween qH  and qs . Resonant triads may be introduced in convection patterns by non-

Boussinesq effects and for the current experiment with heating from above squares 

and quasiperiodic structures have been predicted [78]. 

This work is supported by the NASA Office of Life and Microgravity Sciences 

Grant NAG3-2006 (at the Georgia Institute of Technology) and NAG3-1839 (at the 

University of Texas-Austin). 
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APPENDIX B 

Second Reprint 

App. B is a reprint of the second published Letter describing superlattices initially 

observed in accelerated-modulated Rayleigh-Benard experiments and then confirmed 

in numerical solution of the Boussinesq equations. This Letter appeared in Physical 

Review Letters, volume 85 on pages 4281-4284 in 2000. 

Superlattice patterns in vertically oscillated Rayleigh-Benard convection 

Jeffrey L. Rogers and Michael F. Schatz 

Center for Nonlinear Science and School of Physics, Georgia Institute of Technology, 

Atlanta, Georgia 30332-0430 

Oliver Brausch and Werner Pesch 

Physikalisches Institut der Universitiit Bayreuth, Bayreuth, Germany 9544 0 

We report the first observations of superlattices in thermal convection. The su-

perlattices are selected by a four-mode resonance mechanism that is qualitatively 

different from the three-mode resonance responsible for complex-ordered patterns ob-

served previously in other nonequilibrium systems. Numerical simulations quantita-

tively describe both the pattern structure and the stability boundaries of superlattices 
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observed in laboratory experiments. In the presence of the inversion symmetry, su-

perlattices are found numerically to bifurcate supercritically directly from conduction 

or from a striped base state. 

PACS numbers: 47.20.-k, 47.54.+r, 47.20.Ky 

Symmetry plays a crucial role in selecting the patterns displayed in physical, chem-

ical and biological systems as they are driven away from equilibrium [7]. Frequently, 

an initially homogeneous state loses stability with increasing driving to a regular 

pattern containing a narrow band of wavenumbers. System symmetries select the al-

lowable nonlinear mode interactions which dictate the pattern structure. In isotropic 

systems that are inversion symmetric (invariant under a change in sign of the field 

variables), periodic parallel stripes (rolls) or squares typically form at onset while 

hexagons form in the absence of inversion symmetry due to three-mode interactions 

(resonant triads). Under some conditions, complex - ordered [17] patterns displaying ex-

otic spatial structure described by relatively few Fourier modes emerge at onset as the 

result of interactions between multiple disparate wavenumbers. These exotic states 

include superlattices, which are spatially periodic, and quasipatterns, which have a def-

inite rotational symmetry but are spatially aperiodic [20, 81, 21, 23, 22, 82, 83, 26]. 

In all these cases, the lack of inversion symmetry allows resonant triads to determine 

the pattern structure [17, 20, 81, 21, 23, 22, 82, 83, 26, 84]. 

We report the first experimental and numerical evidence of superlattices in Rayleigh-

Benard convection (RBC). Unlike previously observed complex-ordered patterns these 

superlattices may occur in the presence of inversion symmetry, which inhibits reso-

nant triads. Instead, we find qualitatively different four-mode interactions (resonant 
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tetrads) are responsible for selecting the patterns' planforms. One type of superlattice, 

which we call a square superlattice (SQS) [Fig. 61(a)], is found to bifurcate super-

critically from conduction at a codirnension-two (bicritical) point where linear modes 

of two disparate wavenumbers simultaneously become marginally stable. Studies of 

RBC have helped reveal many basic principles in pattern formation since the experi-

ments are precise and can often be directly compared with the theoretical description 

available through the Oberbeck-Boussinesq equations (OBE) [85]. Our results show 

that understanding of complex-ordered patterns in nonequilibrium systems may be 

advanced by experimental/theoretical investigations of RBC. 

Convection patterns with multiple distinct length and time scales are found in a 

thin fluid layer subjected both to a vertical thermal gradient and vertical sinusoidal 

oscillations. Numerical predictions [35, 53] recently confirmed by experiments [66] in-

dicate such flows arise for sufficiently large Rayleigh number R = "d 3 K,  AT  , with thermal 
U 

expansivity a, gravitational acceleration g, fluid layer depth d, imposed temperature 

difference AT, kinematic viscosity ri and thermal diffusivity K. The critical Rayleigh 

number R, depends on three additional parameters: Prandtl number Pr = oscil-

lation frequency w = d'w//n and displacement amplitude S = 461  (w' and 5' are the 
gd 

dimensional frequency and amplitude, respectively). For fixed Pr and w, modulated 

flows with a long-lengthscale and harmonic (H) temporal response (w) arise for small 

S. Short-lengthscale flows displaying subharmonic (S) temporal response (w/2) are 

found when S is sufficiently large. At a bicritical point 

arise simultaneously with distinct critical wavenumbers qg and qL. 

We study convection in thin layers of compressed CO 2 . The configuration of our 

experimental setup was described previously [66]. Results detailed in this Letter are 

(82c, R2e), H and S modes 
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obtained for Pr = 0.930 and w = 98.0 by quasistatically varying (5 and R for a layer at 

a mean temperature of 34.00 + 0.01 °C and pressure of 32.700 + 0.001 bar. The layer 

depth is d = 0.0650 cm, yielding a characteristic vertical diffusion time d2  ti 2 sec. For 

these conditions, the bicritical point occurs at (52, = 3.768 x 10 -4 , R2c  = 4554 with 

wavenumbers q2 = 1.742 and g. = 5.173 (scaled by d'). We also solve the OBE 

using a code tested for standard RBC [85, 56], generalized to include time dependent 

acceleration [61]. Due to the applied pseudo-spectral method the spatial variations in 

the plane are naturally captured by 2D-Fourier modes. The simulations are typically 

performed on a 256 x 256 grid with periodic boundary conditions and a time step 

dt = 0.04(27/w). We have further validated our numerical methods by reproducing 

known values of R, and the associated critical wavenumbers for both H and S onset, 

as well as typically observed experimental patterns. For presentation purposes we 

define a reduced Rayleigh number € 2  = R / R2 — 1. 

SQS display short-lengthscale, star-like structures located on a long-lengthscale 

square lattice [Fig. 61(a)]. The backbone square sublattice, which usually displays 

few defects in both experiments and simulations, is spanned by the H modes Iciti and 

+ci2 with Ice q121 [Fig. 61(b)]. The star-like structures, which may have various 

orientations, are captured by the eight spectral peaks +(qT, cg) and ±(4 ct4), where 

qL the peaks occur in pairs along lines parallel to sums and differences of 

+q' and ±q2. The end points of the wave vectors qH , ciY ;  ciT,cg and —cell , ciY; q3, q4 

span parallelograms separated by an angle of approximately 90°[dotted lines in Fig. 

61 (b)]. 

Experiments find SQS states are attracting for a wide range of parameters except 

in the vicinity of the bicritical point (Fig. 62). The range of stable SQS is found by 
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Figure 61: Experimental square superlattice (SQS) at S = 3.58x10 -4  and f2  = 0.650. 
These states display complex periodic spatial structure (a) and power spectra (b) 
typically dominated by twelve peaks with cir  0.95q2 and cel 0.86g for these 
parameter values. 
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slowly increasing or decreasing a single parameter (6 or € 2 ). No hysteresis is observed 

in determining the SQS parameter boundary and the SQS patterns form independent 

of the initial state. SQS are observed for a range of 6 from € 2  > 0.38 up to the largest 

E2 experimentally accessible (2--- 1). Over the SQS region le remains relatively 

constant with values from 0.91q2 to 0.94q2 while IqN decreases monotonically with 

increasing E2 from 0.924 at E2 0.38 to 0.78g at € 2  0.96. For 0.2 < €2  < 

0.38 over a narrow range of 6, the uniform square H sublattice found in SQS is 

supplanted by a disordered sublattice containing domains of locally square, rhombic 

and hexagonal symmetries (see Fig. 4 in [66]). For €2  < 0.38, the H sublattice is 

comprised increasingly of hexagons with decreasing 6 2 . For € 2  > 0.2, the S component 

displays star-like structures while close to bicriticality ((5 (5 2, and E2 < 0.2) the S 

component is simply patches of rolls superimposed on a nearly uniform H hexagonal 

sublattice. For (5 slightly less than 62, experiments find uniform, pure H hexagons 

at onset. We attribute the appearance of hexagons to non-Boussinesq effects which 

break the fluid layer inversion symmetry about the midplane (Boussinesq symmetry) 

and allow for three-mode interactions between the H modes [72]. 

Our numerical simulations confirm many of the experimental findings and, ad-

ditionally, allow investigation of the behavior near bicriticality in the presence of 

inversion symmetry. For E 2 0.4, numerical SQS stability boundaries, which are 

computed using random initial conditions, are in good agreement with experiment 

(Fig. 62). In accord with experiments SQS always form by locking into resonant 

states with qg and Ice q . With decreasing E 2 the SQS are found over a 

smoothly narrowing range of 6 about 62c  (Fig. 62 inset). The disordered H sublat-

tices observed in experiments for 0.2 < E 2 < 0.38 are typically seen only as transients 
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Figure 62: Phase-plane showing the SQS stability boundaries as well as the 
codimension-two point at the intersection of the H (solid) and S (dashed) linear sta-
bility curves. Experimentally observed SQS boundary (0) is reproduced in numerical 
solutions (•) at €2  0.4. Experimental patterns in the 0 bounded region display 
square, rhombic and hexagonal symmetry in the H sublattice. Numerical results in-
dicate SQS are the result of a supercritical primary bifurcation at the bicritical point 
( ■ inset). Simulations also find roll superlattices (A inset), over a narrow parameter 
range, which bifurcate supercritically from H rolls. 
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Figure 63: Superlattices observed in numerics near the bicritical point: (a) SQS at 
S = (52 , and €2  = 0.053, (b) roll superlattice at S = 3.732 x 10 -4  and c2 = 0.053 

in the simulations. Moving closer to the bicritical point the SQS patterns become 

more regular, i.e., the parallelograms in Figure 61(b) become regular rectangles as 

qg and IqN g. In this regime, obtaining SQS from random initial con-

ditions becomes prohibitively difficult due to critical slowing down; thus, we used 

approximate SQS states with < 10% amplitude noise as initial conditions and found 

stable SQS patterns for c2  as small as 0.005. (For 6 2  < 0.005 our grid in Fourier 

space has insufficient resolution to describe accurately the SQS mode structure.) At 

(52, we find the H and S mode amplitudes vary like V -6-  indicating the SQS bifurcate 

supercritically from conduction directly at the bicritical point. 

Near the bicritical point, simulations find another superlattice state for S < a2c-

In this case, the conduction state becomes unstable to pure H rolls at onset. With 

increasing c2  a secondary instability leads to a state that we call roll superlattices 

[Fig. 63(b)]. They are (at least linearly) stable over a narrow parameter range before 

the transition to SQS at larger € 2 . For instance at S = 3.732 x 10 -4  roll superlattices 

are observed for 0.033 < e2 < 0.079 (Fig. 62 inset). There exists partial bistability 

with SQS; for example, SQS can arise for 6 2  > 0.063 at S = 3.732 x 10 -4 . Above the 
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Figure 64: The temporal variation of linear eigenvectors multiplied with adjusted 
amplitude factors A = 0.0382, B = 0.0108 (see text) at 6 = 3.732 x 10 -4 , € 2  = 0.053 
for the H (upper curve) and S (lower curve) modes, respectively. Comparison is 
made with the numerical amplitudes of the Fourier modes at cif l.  (+) and q'is: (0), 
respectively, for the SQS midplane temperature field T(x, t) in units of OT . 

onset of roll superlattices the S mode amplitudes follow the common square-root law 

characteristic for a supercritical bifurcation. 

The wave-vector structure of experimental and numerical superlattices indicate 

four-mode interactions are critical to superlattice formation. The parallelograms in 

q—space [Fig. 61(b)] suggest the H and S modes in SQS patterns satisfy the resonance 

conditions 

+(cif — q2-1 ) = +(ccis: — 4); +(q' + 	= +(q — q4). 	(40) 

Wavevectors for each mode class (H or S) need not be of equal magnitude to satisfy 

these relations; thus, Eq (40) describes cases found in both experiments [Fig. 61] and 

simulations where 1%21 may be different for each i when ( 2  is sufficiently large. A four-

mode resonance also governs the roll superlattices. In this case, only three distinct 

spectral peaks are involved; these peaks form a parallelogram by the self-interaction 

of the H mode. The resonance condition takes the form 2q 1! = qcs — q2. 

The noted prominence of the twelve modes in line with Eq. (40) suggests the SQS 

pattern may be represented using the ansatz of a eigenmode expansion in the spirit 

of a weakly nonlinear analysis. The pattern field T(x, t) , which is the shadowgraph 
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intensity or midplane temperature, may be defined as 

T(x, t) = 12{VH ( ) 
	

AH exp(iq • x)} + 
=1 

4 
R{V s (t) 	A:79  exp (iqjs  x)}, 	 (41) 

3=1 

where x is the horizontal coordinate parallel to the plane of the fluid layer. The 

time dependence of the H and S eigenmodes, V H (t) and V s (t) , is given by Floquet's 

theorem: V HS = R{exp(ic H' st) En" 0 c,H , S exp(inwt)} (normalized to Icoil's j = 1) with 

Floquet exponents A ll  = 0 for H modes and /..t s  = iw/2 for S modes. The mode V II 

 is well-described by retaining only the n = 0 and n = 1 terms; i.e., V H  is essentially 

sinusoidal with a constant offset (Fig. 64). By contrast, Vs contains several harmonics 

of w/2 satisfying the S time-translation symmetry V s (t + 27/w) —V s (t). To 

represent the snapshot of a regular SQS [Fig. 63(a)], where the spectral peaks form 

rectangles, only two constant real amplitudes A and B with A = Afi  = B = 

Al = A2 = A3 = A4 are needed in Eq. (41). The amplitudes of the dominant Fourier 

modes in Eq. (41), which are directly available from the numerical temperature field, 

exhibit time dependence that is very well represented by AV H (t) and BV S (t) with 

adjusted amplitudes A, B (Fig. 64). The roll superlattice pattern [Fig. 63(b)] can be 

described analogously to Eq. (41) with one H amplitude A H  and two S amplitudes 

An, where Al = A2 = iB . 

The general structure of the cubic nonlinearities in the six coupled amplitude 

equations for SQS, which determine the six amplitudes A in Eq. (41), is suggested by 

four-wave resonance according to Eq. (40). Inversion symmetry rules out quadratic 

couplings. For the equation describing Afl  at the cubic order, the common terms 

167 



Ati - 0x?_ u 	1, 2) and 	 (3.  = 1 	4) exist with different coupling 

constants. However, according to Eq. (40) additional resonant coupling terms ti 

gA1(4)*, (A2) * A3(A4) *  play a crucial role. It should be noted that two phases 

for the four S amplitudes remain arbitrary within the amplitude equations up to cubic 

order. To fix them, higher order resonances, which are automatically included in the 

full OBE, come into play. The analogous coupled amplitude equations for the roll 

superlattice pattern contain a resonant coupling ti  (A H ) * Als: (4) * . 

Superlattices in modulated thermal convection differ from superficially similar 

patterns observed in Faraday surface-wave [21, 23, 22, 82] and optical [17, 83, 26] 

systems. First, although general theoretical insight into complex-ordered nonlinear 

patterns in the Faraday system has progressed impressively [86], we are not aware of 

quantitatively accurate comparisons with experiments. (The situation is similar in the 

optical case.) By contrast, superlattices observed in modulated RBC experiments can 

be quantitatively compared with solutions of the OBE. Second, while the temporal 

symmetry of invariance under discrete time translation by 27/co rules out resonant 

triads among S modes in all parametrically modulated systems, resonant triads in 

Faraday waves are allowed by the interaction of S and H modes. In modulated 

Boussinesq RBC the additional symmetry of midplane inversion acts on both H and 

S modes; thus, all quadratic interactions are suppressed, and resonant tetrads are 

responsible for the formation of superlattices. Lastly, superlattices in the Faraday and 

optical systems must satisfy both frequency and wavenumber resonance conditions 

while those in modulated RBC need only satisfy a wavenumber condition. This can be 

understood by recalling that both Faraday waves (in the limit of small viscosity and 

infinite depth) and modulated RBC can be modeled by the Mathieu equation, which 
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describes a vertically oscillated pendulum. Onset of surface waves in the Faraday case 

is analogous to the excitation of a hanging pendulum. (This also applies to the optics 

examples, where the waves are externally imposed.) However, onset in modulated 

RBC corresponds to the inverted pendulum [35], which has no natural frequencies 

about its (unstable) equilibrium. 

This work suggests several directions for future investigations. We are currently 

investigating the effect of breaking inversion symmetry on pattern formation near the 

bicritical point by quantitatively comparing experiment and simulations that include 

non-Boussinesq effects. We expect other complex-ordered patterns may arise either 

by two frequency driving, as suggested by recent results in Faraday experiments 

[20, 81, 21, 23, 22, 82], or by using the sensitive dependence of q on w to vary the 

ratio q21q2 over the experimentally accessible range of 1.7 < gig < 5.5. Finally, 

it is hoped this work will motivate mathematical investigations of resonant tetrad 

interactions involving equivariant perturbation theory [87] with the aim of rigorously 

characterizing new routes to complex-ordered patterns in nonequilibrium systems. 

The authors would like to thank Profs. F. Busse, L. Kramer and M. Silber for use-

ful discussions. This work is supported by the NASA Office of Life and Microgravity 

Sciences Grant NAGS-2006. 
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