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CHAPTER I

INTRODUCTION

Many systems are observed to exhibit similar macroscopic spatial structure even when they

differ in their microscopic detail; for example, cellular structures appear as nanometer sized

pores in electrochemical anodization of aluminum [1], concentrations of chemicals in reaction

diffusion systems [2], and standing wave patterns in vertically vibrated granular materials

[3]. The structures can be as simple as patterns of straight rolls [4] and as complex as

superlattices and quasipatterns [5, 6]. In all the cases described above, the structure has

arisen as a result of the system being subject to nonequilibrium external conditions which

can be quantified by a control parameter R. When R is adjusted it can lead to an instability

that drives the system from a uniform featureless state to a state with a pattern; or to one

that changes the nature of an existing pattern.

Patterns formed under nonequilibrium conditions arise out of instabilities that can be

divided into several broad categories: instabilities that are periodic in space and stationary

in time; instabilities that are uniform in space and oscillatory in time; and instabilities

that are periodic in space and oscillatory in time. In this dissertation we restrict ourselves

to patterns that fall under the first category. Above onset they are stationary with a

wave number q, selected by the initial conditions from a continuous band of allowed wave

numbers, that is bounded by secondary instabilities. The canonical example is that of

periodic rolls observed in Rayleigh-Bénard convection (RBC). In RBC a thin confined fluid

layer is subjected to a vertical temperature gradient ∆T by uniformly heating the plate

that forms its bottom boundary while cooling the plate that bounds it from above. The

control parameter is the Rayleigh number R, which is a nondimensional measure of ∆T .

For low R buoyancy forces that arise from the heating are balanced by the viscous forces

of the fluid, thus heat travels from the bottom plate to the top by conduction alone. At

a critical value of R the destabilizing effect of buoyancy is strong enough to overcome the
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stabilizing effect of the dissipation of viscosity and the horizontal thermal conductance in

the fluid layer, and convection results. Mass conservation constrains warm rising fluid to

be balanced by descending cooler fluid. The fluid motion forms a pattern of rolls, with

some wave number q, as expected from the translational symmetry of the convection cell

– it is assumed that the lateral extent of the convection cell is much larger than the fluid

thickness. Pioneering theoretical and experimental work on RBC was performed by Busse

et al. [8] and led to the famous “Busse balloon” – a fundamental result as it demonstrates

the existence of a finite stability region (in this case for straight rolls) and identifies the

secondary instabilities that limit it. Those instabilities are striking in appearance and have

names such as “zig-zag” and “cross-roll” that describe their form. They have a universal

character and have been associated with roll state instability in other physical systems such

as nematic liquid crystals [9], granular materials [10], and nonlinear optics [11].

Theoretical and numerical studies have been carried out on more complex stationary

periodic patterns such as those of triangles [12] and of hexagons [13, 14], but quantitative

experimental investigations are lacking. The goal of this dissertation is to present results

of the first quantitative experimental investigations of hexagons. The experiments are per-

formed on a Bénard-Marangoni convection (BMC) cell – an experiment similar to RBC but

with a convecting fluid that has a free upper surface. That boundary condition breaks the

inversion symmetry observed in the vertical direction in RBC, and leads to the formation of

stable hexagons at onset. The experiments concentrate on three areas of fundamental inter-

est: First the region of stability of hexagons is determined for a range of control parameter

by imposing ideal hexagonal patterns as initial conditions and observing their stability for

different wave numbers – patterns imposed with wave number inside the stable band are

stationary, while those imposed with wave number outside the stable band form penta-hepta

defects (PHD) as a result of secondary instability. Next, the nature of the mechanisms that

lead to secondary instability are studied. Theory suggests that perturbations that are long

wavelength modulations of the phase of the hexagonal pattern are responsible for secondary

instability [13, 14]. The phase perturbations are of two different types: A longitudinal mod-

ulation of wave vector k that has a curl-free phase vector Φ parallel to k analogous to a
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P-wave in elastic media; and a transverse modulation with a divergence-free phase vector Φ

perpendicular to k and analogous to an S-wave. Finally, the motion of PHDs is investigated.

When formed through secondary instability PHDs move in such a way as to increase the

wave number of the pattern if it falls below the lower limit of the stability band or decrease

the wave number if it is above the upper limit. PHDs are predicted to move even when the

wave number is within the stable band [15]. The trajectory and speed of a single PHD are

found to depend strongly on the wave numbers of two of the three individual component

roll patterns that make up the hexagonal pattern. A time dependence in the motion of

the PHD is found – an aspect not predicted by theoretical studies, which assume constant

velocity of the PHD as an ansatz.

Experimental studies of hexagonal and other complex patterns have been hampered by

difficulties encountered in imposing controlled initial conditions. A thermo-optical technique

was used in these investigations to overcome that problem by thermally imprinting different

hexagonal patterns as initial conditions on a BMC cell. It was coupled with shadowgraphy

to measure the dynamics of the subsequent pattern evolution enabling the detailed study

outlined above.

The dissertation is arranged as follows: In Chapter II some basic theory and experi-

mental work on RBC is described. This sets a framework with which to discuss hexagonal

patterns in BMC. Chapter III provides a detailed description of the experimental apparatus

along with the approaches used to study the different phenomena. Chapter IV presents our

experimental results and their comparison with theoretical predictions as well as conclusions

and possible avenues of future study. Chapter V is a discussion of the work done and how

it relates to pattern formation in general.
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CHAPTER II

BACKGROUND

When a layer of liquid with a free upper surface is heated from below with a sufficient

temperature gradient, the motionless conducting state is replaced with a convecting pattern

of hexagons. This phenomenon, referred to as Bénard-Marangoni convection (BMC), was

first discovered by Bénard in experiments conducted in 1900 [16]. Lord Rayleigh published

a paper in 1916 [4] in which he attributed the convection to the buoyancy resulting from

thermal expansion of liquid near the heated bottom plate. Over 40 years later Pearson [17],

neglecting buoyancy, showed that hexagonal patterns could be produced by considering

surface-tension gradients arising from temperature variations at the gas-liquid interface.

This is the so-called “Marangoni effect” first investigated by Thomson in 1855 [18] and later

by Marangoni [19]. Studies by Nield in 1964 [20] combined both the effects of buoyancy

and surface tension and suggested that the two mechanisms are tightly coupled. He showed

that for a large liquid depth buoyancy is the dominant mechanism driving convection while

for small depths surface tension dominates. Thus he concluded that the patterns observed

by Bénard were probably surface tension dominated.

The appearance of stable hexagons at the onset of BMC makes it a desirable system

with which to study nonequilibrium patterns with hexagonal symmetry, analogous to the

pioneering investigations by Busse et al. [8] on straight convection rolls in Rayleigh-Bénard

convection (RBC). This chapter introduces RBC and then discusses BMC in more detail.

2.1 Rayleigh-Bénard Convection

Much of the progress in understanding nonequilibrium pattern forming systems stems from

extensive theoretical and experimental work done on RBC. The following is an overview

of the main concepts and results of interest to this dissertation. Extensive reviews are

presented in Refs. [21, 22]. RBC bears some similarities to BMC and serves as a useful
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Figure 1: Illustration of fluid stream lines of straight convection rolls in RBC. (From Cross
and Hohenberg [7].)

system with which to compare results of our investigations. Unlike in BMC, there is no

free surface in RBC, thus the sole mechanism that drives convection is the temperature

difference, ∆T , across the fluid. The buoyancy force per unit volume is given by ραg∆T

where ρ, α = −ρ−1∂ρ/∂T and g are, respectively, the average density, thermal expansion

coefficient and acceleration due to gravity [21]. Opposing convection is the viscous friction

of the fluid along with the relaxation of temperature gradients due to heat diffusion. The

kinematic viscosity ν = η/ρ, where η is the dynamic viscosity, gives a measure of the viscous

damping, while the thermal diffusivity κ quantifies the thermal damping. Associated with

the buoyancy is a characteristic time τB, obtained from the buoyancy force by considering

buoyancy force per unit volume = ρ× acceleration.

Then τB is defined by

ραg∆T = ρ
d

τ2
B

,

where d is the fluid depth. The characteristic times τη and τθ for kinematic viscosity and

thermal diffusivity respectively are defined from ν = d2/τη and κ = d2/τθ. Thus the control

parameter for RBC is the Rayleigh number defined as R = τητθ/τ2
B = αg∆Td3/νκ, i.e., the

ratio of the stabilizing and destabilizing time scales. When R is small, the response time

of the damping is faster than the time it takes for a warm bubble to rise so convection is

suppressed; and for sufficiently large R the opposite is true and convection results. In large

aspect ratio systems, i.e., L/2d À 1 (where L is the lateral length of the convection cell of
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depth d) convective onset occurs at R ' 1708. Translational symmetry in the plane leads

to a convection pattern of periodic rolls with a wave vector q, which breaks the symmetry

of the uniform state (Fig. 1). For R > 1708 the wave number q of the rolls is selected

from a narrow range of allowed wave numbers centered around q0 ' 3.117/d [7]. From a

physical standpoint the limited range in q of stable rolls can be understood by considering

the following: For q < q0 the rolls are flat and have excess thermal dissipation at the top

and bottom plates arising from increased horizontal motion; while for q > q0 the rolls are

tall and thin resulting in excess vertical shear. Thus for any fixed R across a fluid of Prandtl

number Pr = ν/κ = τθ/τη, the ratio of the strengths of the two damping mechanisms, there

is a narrow finite region of stability. This region is characterized by the “Busse balloon”

obtained theoretically and through experiments by Busse et al. [8] in the late 1960s and

early 1970s. Fig. 2 shows a slice of the Busse balloon at Pr = 7. When straight rolls have

q at the edge of the region of stability they become unstable through one of a number of

several distinct mechanisms that depend on R, Pr and on which side of the stable region q

is.

2.2 Bénard-Marangoni Convection

The control parameter that measures the strength of surface tension driving in BMC is

the Marangoni number M = σT ∆Td/ρνκ, where σ is the surface tension and σT ≡ dσ
dT ;

d, ρ, ν, κ are respectively, the liquid’s thickness, density, kinematic viscosity, and thermal

conductivity. With σT < 0, surface tension gradients draw fluid from warm areas at the

liquid-gas interface to cool areas. Due to mass conservation this creates upflows at the locally

warm spots and downflows at the cool areas (Fig. 3). As in the case of the Rayleigh number,

R, the Marangoni number, M , is the ratio τητθ/τ2
th of the stabilizing and destabilizing time

scales, where τ2
th = ρd3/σT ∆T is the destabilizing thermocapillary time scale. For large

enough M (' 80) thermocapillarity is sufficiently strong to overcome the damping due to

viscosity and heat conduction resulting in convection. Unlike in the case of RBC there

is no inversion symmetry in the vertical direction about the mid-plane of the liquid layer

and consequently the equations of motion are not invariant under a reversal of the fluid
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Figure 2: Stability diagram for rolls in RBC. The shaded region represents the parameter
range in Rayleigh number R and wave number q space at fixed Prandtl number Pr = 7 for
which straight rolls are stable. The region is bounded by secondary instabilities of the roll
states: Z - zig-zag, CR - cross-roll, K - knot and SV - skewed-varicose. The dashed line
labeled by N is the neutral stability curve above which convection occurs. (From Cross and
Hohenberg [7].)
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velocity variables. Thus three roll patterns arising from the translational symmetry in the

lateral direction couple resonantly to form a pattern of hexagons [23]. A perfect hexagonal

pattern can be considered as a superposition of three roll systems Aje
iqj ·r, for j = 1, 2, 3,

and r = (x, y). The qj are the wave vectors of the roll patterns and are oriented 120◦ with

respect to one another. They satisfy the resonance condition q1+q2+q3 = 0. To the lowest

order in the small parameter ε = (M −Mc)/Mc, which is a nondimensional representation

of the control parameter M , the following equations for the amplitudes of the rolls can be

written from symmetry considerations [25] (assuming q1 = q2 = q3):

∂tAi = εAi + αAj
∗Ak

∗ − (|Ai|2 + γ|Aj |2 + γ|Ak|2)Ai,

with {i, j, k} = {1, 2, 3}, {2, 3, 1}, {3, 1, 2}. The Aj are O(ε1/2) and γ is O(1). The coefficient

of the inversion symmetry breaking quadratic term α is O(ε1/2). The cubic terms prevent

unbounded growth of the amplitudes due to the linear and quadratic terms. For non-ideal

patterns additional terms that describe the spatial variation in the amplitudes must be

included. To lowest order in ε this variation is described by the term (n̂j · ∇)2Aj where nj

is the unit vector parallel to wave vector qj . Thus

∂tAi = εAi + αA∗jA
∗
k − (|Ai|2 + γ|Aj |2 + γ|Ak|2)Ai + (n̂i · ∇)2Ai, (1)

The variables can be rescaled so that the coefficient of the quadratic terms is equal to one

by introducing a new parameter µ = ε/α2 = O(1) and amplitude Ã = A/α. The time

variable becomes T = α2t and the spatial variables are rescaled as Xj = αxj and Yj = αyj .

The equations then become

∂T Ãi = µÃi + Ã∗j Ã
∗
k − (|Ãi|2 + γ|Ãj |2 + γ|Ãk|2)Ãi + (n̂i · ∇)2Ãi, (2)

where in this case (n̂j · ∇)2 = ∂Xj .

As mentioned at the beginning of the chapter the effects of buoyancy must also be

taken into account when considering BMC. It has been suggested that buoyancy dominated

convection yields qualitatively different regions of stable hexagons in the (M, q) plane than

does surface tension dominated convection [26]. Thermocapillarity is considered dominant

when M/R = ρνκ/σT ∆Td2 > 1. The simplest way to control this ratio is by adjusting
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(a) (b)

Figure 3: Liquid upflow in a pattern of BMC. (a) Shadowgraph image of a pattern of
hexagons. Warm liquid flows upward in the dark cell centers and flows downward at the
white cell edges. (b) Schematic of the liquid flows.

the liquid depth d. Thus, as asserted by Nield, [20] buoyancy driving is dominant for

thick liquid layers while thermocapillarity is the primary driving mechanism when d is

small. For thinner depths still, the patterns become qualitatively different. In that case

short wavelength temperature perturbations are quickly damped (since τθ = d2/κ), but the

gravitational time scale τ2
grav = d/g is large enough that long wavelength deformations due

to thermocapillarity are not damped quickly enough and draw fluid away from the center of

the convection cell creating a large dry spot [27]. The relevant parameter for determining

which pattern appears is the Galileo number G = gd3/νκ = τητθ/τ2
grav. For large enough G

gravity responds quickly enough to flatten out deformational perturbations and hexagons

are the expected planform. Fig. 4 shows the different neutral stability curves for convection

when G is large and when G is small.

2.2.1 Stability Region

Externally driven stationary periodic hexagonal patterns are expected, as in the case of rolls

in RBC, to have a finite region of stability. Estimates of its size and shape have been made

by Echebarria and Pérez-Garciá [13], and Young and Riecke [14] using amplitude equations,

which only consider the essential symmetries of the problem. Bestehorn [26] has computed

the region for hexagons formed in BMC using the relevant governing equations. The main

ideas behind that analysis are outlined below.

9



(b)(a)

Figure 4: Neutral stability curves for two different types of instability in BM convection.
M is the Marangoni number and q is the wave number of the instability. (a) As M is raised
from zero the onset of convection is to patterns of q ≈ 2 indicated by the global minimum of
the neutral stability curve. (b) For sufficiently thin liquid depths d the global minimum is
at q = 0 and a long wavelength deformation of the liquid is the primary instability. (From
Schatz and Neitzel[28].)

The equations that describe BMC are the Navier-Stokes equations, the continuity equa-

tion and the equation for the temperature field which are respectively,

ρ[∂tv + v · ∇v] = ρgẑ−∇p + η∆v, (3)

∇·v = 0, (4)

∂tT + v.∇T = κ∆T, (5)

where T = T (r, t) is the temperature field, v = v(r, t) is the velocity field, p = p(r, t)

is the pressure field and η is the viscosity. Bestehorn uses the Boussinesq approximation,

which assumes the variation of the density with temperature can be neglected except for

the buoyancy term of the Navier-Stokes equations where it is assumed to be linear. Thus

ρ(T ) = ρ0{1− α[T (r, t)− T0]}, (6)

where T0 is the temperature of the bottom plate. The velocity field is divergence-free and

can be decomposed as

v = ∇× (φẑ) +∇×∇× (ψẑ), (7)

where φ = φ(r, t) and ψ = ψ(r, t) are scalar fields. Denoting the variation of the temperature
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from the linear profile by Θ = Θ(r, t) and eliminating the pressure by taking the curl and

twice the curl of the Navier-Stokes equations yields
{

∆− 1
Pr

∂t

}
∆∆2ψ = R∆2Θ− 1

Pr
[∇×∇× (v · ∇v)]z, (8)

{
∆− 1

Pr
∂t

}
∆2φ = − 1

Pr
[∇× (v · ∇v)]z, (9)

[∇− ∂t]Θ = ∆2ψ + v · ∇Θ, (10)

where Pr = η/ρ0κ, ∆2φ = ∂xx + ∂yy and R is the Rayleigh number. Time and length

have been scaled by τθ = d2/κ and the depth d respectively. Assuming vanishing velocity

components at the fixed boundaries, Eq. (7) leads to

φ(r, t) = ψ(r, t) = ∂nψ(r, t) = 0 (11)

for r on the bottom and at the vertical walls. The vertical walls also have

∂nφ(r, t) = 0, ∆2ψ(r, t) = 0. (12)

Boundary conditions for the temperature field can be written as

∂zΘ(r, t) =





Bi0Θ(r, t) for z = 0

−Bi1Θ(r, t) for z = 1

where Bi is the Biot number, the ratio of the thermal conductivity of the boundary wall to

that of the fluid. For a perfectly conducting boundary Bi →∞, and for a poor conductor

Bi ¿ 1. Assuming a perfectly conducting bottom boundary Bi0 →∞, while for the poorly

conducting air boundary the Biot number is taken as Bi1 ≈ 0.1. The velocity field and the

temperature field at the free surface (z = 1) are linked by

∂zφ(r, t) = 0, ψ(r, t) = 0, ∂2
zψ(r, t) = −MΘ(r, t).

Assuming Pr →∞ Eq. (10) becomes

∆∆2φ(r, t) = 0,

which together with boundary conditions, Eqs. (11) and (12), leads to

φ(r, t) = 0,

11



Figure 5: Theoretical prediction of the stability band for hexagons in BMC [26] for Pr →
∞ and Γ ≈ 2.7 in ε-k space. ε = (M −Mc)/Mc and k is the wave number. Hexagons are
stable in the shaded region bounded by phase instabilities. The dots are experimental data
obtained from [30]. The line near the bottom is the neutral stability curve; the line at left
corresponds to amplitude instabilities. (From Bestehorn [26])

throughout the liquid. Thus only two dependent variables ψ and Θ remain.

The solutions ψ(r, t) and Θ(r, t) of the basic Eqs.(9)-(10) are projected onto eigenfunc-

tions of their linearized form to obtain a large set of coupled ordinary differential equations

of the eigenfunction amplitudes. By the slaving principle the linearly damped modes are

eliminated, leaving a smaller system of amplitude equations which can be studied in de-

tail. One particular solution of the reduced equations is that of hexagons. The stability of

hexagon solutions as a function of their wave number k was computed by Bestehorn who

obtained the stability boundaries plotted in Fig. 5.

At the boundaries of the stability region the hexagon solutions are found to be unstable

to phase perturbations. However, unlike the case of the Busse balloon, where the forms of

the perturbations that lead to the instability of straight rolls have been determined, the

mechanisms of instability for hexagons have not been identified in Bestehorn’s study. Other

researchers (Echebarria and Pérez-Garciá [13], and Young and Riecke [14]) have suggested
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forms for secondary phase instabilities in hexagonal patterns by starting considering ampli-

tude equations. The results of their analyses, which are outlined in Chapter IV, form the

basis of the experimental investigation. Until now no comprehensive experimental measure-

ments have been been carried out to measure either the boundaries of the stable band or

to determine the secondary phase instabilities for hexagons.

Much of the progress in pattern formation has been through experimental studies of flu-

ids. The clear advantages of fluid systems are that their governing equations are well known,

which allows quantitative comparisons with complementary theoretical studies. Accurate

and convenient techniques have been developed in recent years for measurement of fluid

flows at multiple spatial points in time. However, fluids experiments are typically limited

by difficulties in the control of their initial conditions. Thus quantitative study of phenom-

ena such as secondary instability, that require the probing of a range of initial conditions,

is often lacking. For the investigations of this dissertation a novel thermo-optical technique

that exploits the main driving mechanism of BMC is used to impose a variety of initial

conditions and is described in the next chapter. Coupled with shadowgraph measurements,

it enables investigation of hexagons analogous to the straight roll studies in RBC of 30 years

ago [8].

13



CHAPTER III

EXPERIMENTAL SETUP

3.1 Apparatus

The experimental setup (Fig. 6) is designed to enable thermo-optical imprinting of a pattern

that sets an initial condition on a Bénard-Marangoni convection cell, along with noninvasive

tracking of its subsequent evolution. The setup is divided into three main subsystems:

the BM convection-cell assembly (Fig. 7); the fluid-flow-visualization subsystem (Fig. 10);

and the flow-manipulation subsystem (Fig. 14), all of which are connected to a central

computer. The convection-cell and flow-measurement subsystems are well developed and

have been used extensively by other researchers [10, 29, 30]. The unique capability of

this experimental setup lies in its ability, provided by the flow manipulation subsystem, to

impose controlled initial conditions through rapid multi-point actuation of liquid flows. The

discussion below starts with a description of the BM convection cell and then details the

visualization subsystem, before finally describing the technique used to impose controlled

patterns.

3.1.1 Bénard-Marangoni Convection Cell

The convection cell consists of a thin silicone-oil layer, used as a test liquid, that is heated

uniformly from below by a metal mirror and cooled from above by a thin air layer sandwiched

between the silicone oil and a liquid cooled window (Fig. 7). The convection cell is on a

platform that is mounted on top of three fine adjustment screws, arranged in an equilateral

triangle, to enable precise leveling of the silicone-oil layer. The cooled window is part of a

separate platform that is mounted on similar screws to allow fine control of the thickness

of the air layer.

The silicone oil is chosen because of its low susceptibility to surfactants which would

otherwise significantly alter its surface-tension properties, and hence the dynamics of the
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Figure 6: Schematic of the general setup of the experiment. The infrared laser and mirror
assembly enable rapid local heating of the gas liquid interface. The light source along with
a camera and other optics are used for shadowgraph visualization of the convective liquid
flows.
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Figure 7: General setup of the cell assembly. A heating pad below the aluminum mirror
sets the bottom temperature while circulating cooled carbon disulfide maintains the top
temperature. The bottom set of fine adjustment screws levels the liquid and the top set
controls the thickness of the air gap.

fluid flows. It has the additional advantage of being available in a range of Prandtl number

Pr = ν/κ = τθ/τη, which defines the ratio of the thermal and viscous dissipative time

scales. In the experiments Pr = 87.25, i.e., the velocity dissipation due to viscosity is much

faster than the dissipation of heat by conduction. The silicone-oil depth is d = 0.98±0.01

mm, which sets the time scale τv ≡ τθ = d2/κ = 10.2 s of the experiments. (Time scale

τv is typically taken to be the larger of τθ and τη – in this case τη = 0.12.) The layer is

confined by a sidewall of inner diameter of 76.2±0.01 mm yielding an aspect ratio of 38.9.

The bottom plate of the cell is a 76 mm diameter and 12.5 mm thick polished aluminum

mirror whose surface varies in height by ∼100 Å. A flat mirror is necessary for shadowgraphy

and for leveling of the cell by interferometry. The mirror is placed concentrically inside an

aluminum ring of the same thickness but with a slightly larger inner diameter. A hole is

drilled into the side of the ring to accommodate a 20-gauge Teflon tube whose other end

is attached to a syringe used to inject silicone oil into the cell (Fig. 8). On top of the ring

is a 1 mm thick and 6.35 mm wide ring of Teflon that serves as the sidewall. Teflon is

used instead of aluminum because its thermal conductivity (∼20×103 erg s−1 cm−1 K−1) is

more closely matched to that of silicone oil (13.3×103erg s−1 cm−1 K−1) than aluminum’s
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12.5 mm

heating pad O−ring

silicone oil

76.2 mm
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teflon sidewall
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d = 0.94 mm

Insulating rubber

metal mirror

Figure 8: Closeup of the bottom plate. The thermistor is placed in the center of the
aluminum plate with some heat-sink compound to ensure accurate temperature readings.
The Teflon tubing attached to the syringe allows controlled filling of the cell with silicone
oil.

is (∼23,000×103erg s−1 cm−1 K−1).

Leveling of the silicone oil is achieved through interferometry: A 632.8 nm helium-neon

laser beam is expanded through a spatial filter and directed at the convection cell. The

laser light that reflects off the flat mirrored bottom plate interferes with the light that

reflects of the surface of the silicone oil and forms fringes whose separation increases as the

angle between the silicone-oil surface and the mirror decreases. The silicone-oil depth d is

then leveled using the three fine adjustment screws – the 4 mm diameter ball bearings at

the top of the screws fit snugly into machined grooves at the base of the platform which

has an additional screw at its center to secure it. The leveling can decrease the number of

fringes to ∼5 across the diameter of the cell making the depth uniform to within ∼10−3mm.

Interferometry is also used to ensure a uniform gap between the mirrored bottom plate and

the bottom window and set the air gap at dg = 0.97±0.01 mm. The silicone-oil depth is

measured with a vernier attached to a needle. The needle is lowered until it touches the

surface of the silicone oil – an event made abrupt by the capillary action of the silicone oil

on the needle. The reading on the vernier is noted before lowering farther it until it touches
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the metal mirror. Contact is established accurately by forming a circuit that includes

the mirror, the needle and a digital multimeter and noting the vernier reading when the

resistance drops sharply.

Heating from below is with a thin flat 18Ω (Minco) resistive heating pad, which at

normal operating temperatures provides ∼7 W of power. The high thermal conductivity of

aluminum coupled with heat-sink compound placed between the heater and the metal mirror

ensure uniform heating of the silicone oil. A rubber insulator is placed below the heater to

reduce heat loss. The heater is connected to a Kepco ATE-36-3M power supply that is, in

turn, connected to the main computer through a National Instruments LabPC Card that

can be instructed to output 0-10 V. The power supply is configured to output a voltage

that varies as a multiple of an input voltage thus providing sufficient power to the Minco

heating pad. The temperature Tb of the bottom plate is measured with a thermistor placed

inside a hole drilled in the bottom of the mirror. Heat-sink compound placed in the hole

with the thermistor ensures accurate temperature reading. The thermistor is connected

to a Hewlett Packard 34401A multimeter that can be configured to be periodically read

by the computer. Using the thermistor readings and the heater, the bottom plate can be

maintained at a range of temperatures within 0.005◦C using proportional-integral-derivative

control (Appendix A).

The temperature Tt = 22.39±0.03◦C of the cooled-ZnS window is maintained by cir-

culating carbon disulfide (CS2) in a closed loop system that includes a pump and a heat

exchanger (Fig. 9). The windows are made of ZnS Cleartran r© with anti-reflection coating

at 10.6 µm, which together with the circulating CS2, allow both visualization of the fluid

flows and optical access to the silicone oil by the infrared laser beam used to impose initial

conditions. To keep the toxic, small-molecule CS2 from escaping the closed system, fittings

and tubing from Swagelok, specially designed to provide a tight seal, are used. The system

is leak-checked with helium, a smaller molecule than CS2, before filling it. Because CS2 is

a strong solvent, the tubing is made from PFA (perfluoroalkoxy), all O-rings are made of

Viton r©, and the pump housing is made from glass filled Ryton r© (polyphenylenesulphide).

The CS2 circulates through a reservoir to remove bubbles, and then through a copper coil
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Figure 9: Schematic of the cooling system. CS2 is pumped through a heat exchanger
placed in temperature bath. The reservoir is set up to remove air bubbles from the system.
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immersed in a Neslab RTE 210 temperature bath before returning to the cooled windows.

A convective pattern forms when the temperature difference ∆T across the liquid layer

is 1.44◦C. Because a thermistor cannot be placed in the silicone oil without disturbing it,

∆T is estimated from Tb and Tt by assuming that heat transport is solely by conduction

in both the gas and liquid layers. Thus

∆T =
Tb − Tt

1 + dgk
dkg

,

where k = 13.3×103erg s−1 cm−1 and kg = 2.76×103 erg s−1 cm−1 K−1 are the liquid and

gas thermal conductivities respectively. Thus at onset Mc = 86, which compares well with

Pearson’s theoretical estimate of Mc = 80 [17], and a measurement of Mc = 84 by Schatz et

al. [31]. Close to onset, thermal driving of the sidewall [31] causes a pattern of concentric

rings to form near the boundary. The rings are replaced by hexagons in a localized area

after an increase in ∆T of ∼10−3K. More hexagons form in a front that propagates across

the entire silicone-oil layer resulting in a pattern of unique wave number q0 = 2πd/λ ≈ 2.

3.1.2 Flow Visualization

Flow visualization is achieved non-invasively using shadowgraphy [10]. Light from a halogen

lamp is passed through a pinhole located at the focal point of a large lens where it emerges

normal to the mirrored bottom plate (Fig. 10). The light reflects off the mirror and is

redirected on its return path to a CCD camera connected to a frame-grabber in the main

computer. Along their trip the light rays pass through the silicone oil. The temperature-

induced density variations in the silicone oil cause refractive-index gradients which result in

a lensing effect – light is bent away from warm areas of locally low refractive index toward

cool areas of locally high refractive index creating an image of varying intensity at the

CCD camera (Fig. 11). The optics can be tuned such that the dark areas correspond to

warm regions while the light areas correspond to cool areas of the silicone oil. The index

of refraction coefficient nT = −(∂n/∂T )p in liquids is typically of the order of 10−4K−1

making shadowgraphy a very sensitive technique for detecting temperature variations, and

hence, fluid flows.
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Figure 10: Schematic of shadowgraph setup.
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(b)(a)

Figure 11: (a) A typical 320×240 shadowgraph image captured from CCD camera. A
background image taken with no pattern present has been subtracted to enhance the image.
(b) The same image cropped to 240×240 and masked with a circular window that has a
smooth transition to zero.

The optical path of the shadowgraph is illustrated in Fig. 10. When the camera’s image

plane is focused such that a real image of the plane of the liquid surface is formed, the

sensitivity is zero and no convection pattern is observed. Thus the image plane should

be above or below the plane of the liquid surface to improve sensitivity – the resulting

shadowgraphs are negatives of each other. However, imaging too far above the surface

introduces image distortion as the shadowgraph response becomes nonlinear near “caustics”.

Caustics are features that appear in a shadowgraph image that do not correspond to any

characteristic of the pattern. They form at the focal length of the convective pattern when

refracted light rays leaving the convection cell and intersect (Fig. 12).

A frame-capture card and accompanying software are used to extract and save digital

images from the CCD camera – typically 320×240 pixels, but occasionally 640×480 pixels

if greater resolution is desired. The 320×240 pixel images are cropped appropriately to

240×240 and multiplied with a circular window that has a smooth cutoff to remove the

boundary region and the portion of the pattern distorted by it (Fig. 11). Images that are

640×480 pixels are cropped to 480×480 pixels. A background image taken when the control

parameter is below onset is subtracted from the patterned images to improve the signal to

noise ratio. The images are then analyzed using techniques described in section 3.2.1.1.
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Figure 12: A shadowgraph image of straight convection rolls in RBC (a), and a side view
illustration of the paths taken by light rays emerging from the convection cell. Caustics
arise in regions near the focal point of the pattern where light rays intersect, and appear in
a shadowgraph image as regions of increased intensity.

3.1.3 Flow Manipulation

Control of experimental initial conditions is achieved through selective localized heating of

a grid of points (Fig. 13(a), (c)) at the liquid-gas interface with a 10.6 µm Synrad CO2

infrared laser beam. At that frequency the laser light is tuned to be absorbed at the surface

of the silicone-oil layer [32]. The technique directly alters the liquid flow by reducing the

surface tension at the heated spots thereby drawing liquid away to the cooler unheated

regions. After repeated lasing of the same points, the heated spots become regions of liquid

up-flow and a pattern is established (Fig. 13(d)). The technique is distinct from that used

by Busse et al. [8] to impose straight convection rolls with a prescribed wave number in

Rayleigh-Bénard convection (RBC). With that method a pattern is imposed by passing

light from a 500 watt light bulb through a mask of roll patterns. The buoyancy of the

heated regions is increased, resulting in upward fluid flow. The technique is less effective

in Bénard-Marangoni convection (BMC) because the air layer above the liquid becomes

heated by the lamp, leading to perturbations of the surface temperature and distortion of

the pattern [29].

The laser beam is rastered across the liquid surface employing a scanning technique

commonly used in laser-light shows. For this experiment a General Scanning Inc. DE3000

assembly whose main features are outlined in Fig. 14 is used. A predetermined set of
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(a) (b)

(c) (d)

Figure 13: The process of imposing an ideal hexagonal pattern on the BMC cell. (a)
Computer generated grid of points that correspond to the centers of individual hexagonal
cells in the pattern. (b) The boundary points that are imposed to separate the interior
dynamics from perturbations due to the cell apparatus wall. They are the same points as in
(a) minus the interior 75%. (c) The infrared laser rapidly scans across the free surface layer
from right to left. The dark vertical line indicates the current position of the laser. (d) A
perfect pattern formed after several passes by the laser beam. The dashed line indicates
the boundary of the lased points in (b).
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coordinates and commands is input serially from a computer through the RS232 port or

through an 8-bit parallel port to a beam-position controller (BPC). The BPC outputs a

stream of X and Y coordinates to a pair of digital-to-analog converters connected to servo

motors (galvanometers) that move two mirrors. The mirrors deflect an incoming laser beam

to the corresponding X and Y coordinates. By outputting a signal to a laser controller the

BPC synchronizes the laser with the mirrors allowing it to be turned off between points.

It also enables synchronous modulation of the beam intensity, although that capability is

not used in our experiments. The laser intensity is adjusted asynchronously by bypassing

the scanner, and connecting the laser-controller box directly to the output of a LabPC card

inside a computer. The laser-beam thickness can be adjusted by a telescope which first

expands then refocuses the beam.

The scanning unit accepts a range of elementary input commands that that allow flex-

ibility in the control of the laser beam. For example, the time spent lasing each point can

be made as short as 270 µs. However, there is a balance between speed and accuracy –

scanning more quickly gives the finite-moment-of-inertia mirrors less time to settle down,

which degrades the accuracy of the targeting, while scanning too slowly allows the pattern

enough time to evolve away from the target pattern. A frequently-used command is one

that directs the scanner to continuously cycle through the same input set of points. That

eliminates the slow process of reloading points to the scanner, a shortcoming that has been

largely resolved with faster integrated circuits in the current generation of scanning systems.

During typical operation the scanner accepts a pattern of ∼500 points (pairs of coor-

dinates) and rasters them in the order in which it received them. It first prepositions the

mirrors and then turns the laser on briefly, typically ∼3 ms, for the first point. It then

positions the mirrors for the next pair of coordinates and lases again. The average time

between lased points is ∼20 ms. With that short a duty cycle the 7 W maximum power of

the laser is effectively reduced to ∼ 1 W. Reflections and absorption from the optics and the

carbon disulfide further reduce the power that reaches the liquid-gas interface to ∼0.3 W.

With a beam diameter of ≈1.5 mm the heat flux of the laser at each point is ∼10−4W/mm2.

However, that is sufficient to alter the surface tension because infrared radiation is strongly
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Figure 14: The main features of the laser scanning system. By controlling the laser and
a pair of mirrors the scanner can direct a laser beam to selected coordinates on the target.

absorbed by silicone oil, ensuring most of the heating is at the interface where the driving

occurs; and it is approximately equal to the heat flux provided by the resistive heater. The

pattern is cycled through several times and usually establishes within 10τv whereupon the

lasing is turned off and within another ∼τv the strong thermal gradients caused by the laser

dissipate thereby setting the initial conditions from which the evolution of the pattern can

be studied. Lasing is continued on the outer 25% of the pattern in a hexagonal boundary to

pin the cells (Fig. 13(b), (d)) otherwise new cells are created, or existing cells are destroyed,

at the sidewall leading to pattern distortion.

Patterns can be imposed by two different means: either replacing an existing pattern,

for ε > 0, or by turning on the lasing when ε has been reduced below onset and then

raising ε to the desired value. The latter is necessary when imposing large-wave-number

patterns for operating values of ε & 0.5. In that case the larger wave number means a larger

number of scanned points which, in turn, increases the scan cycle time to & τv. Thus a

disturbance caused by the laser has enough time to relax away from the target state. That

effect coupled with the stronger driving at large ε results in defects in the imposed pattern
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that resist being altered. An alternative solution is to increase the laser power along with

the scan rate, i.e., an equipment upgrade.

The experimental apparatus has been described. Section 3.2 focuses on how the appara-

tus is used to investigate the three areas of interest: The region of stability for hexagons; the

mechanisms that cause instability at the boundary of the stability region; and the motion

of a common defect observed at the onset of secondary instability.

3.2 Methodology

3.2.1 Stable Band

Periodic patterns formed under nonequilibrium external conditions have a finite region in

control parameter and wave number space for which they are stable. As described in

section 2.1, the work of Busse et al. characterized the stable region for stationary straight

rolls in Rayleigh-Bénard convection (RBC) through extensive theoretical and experimental

work [8]. The three-dimensional stability region was determined for a range of the control

parameter R, the Rayleigh number, and fluid Pr to form what is referred to as the “Busse

balloon”. Straight convection rolls were imposed for a range of wave numbers using a high-

intensity lamp and then monitored for stability. For unstable wave numbers the pattern is

not stationary and its wave number changes by a number of possible secondary instabilities

(Fig. 2). The wave number for which secondary instability sets in marks the location of the

boundary for the corresponding R and Pr.

Stationary hexagonal patterns formed under nonequilibrium external driving conditions

are also expected to be stable over a finite range of wave number q and control param-

eter M , the Marangoni number. Bestehorn [26] calculated such a band for hexagons in

Bénard-Marangoni convection (BMC) for an infinite Pr fluid (Fig. 5). Previous experi-

mental measurements of the stability region for hexagons in BMC by Cerisier [29], using

a mechanical method to set the initial conditions, reported that the patterns evolve to a

unique mean wavelength. That is, no finite stability band was observed. However, the

failure to find a range of stable wave numbers may have been due to boundary effects. In

our experiments a stable band that is significantly smaller than that predicted by Bestehorn
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Figure 15: A hexagonal pattern (a) and the power spectrum of its Fourier transform (b).

is observed when no steps are taken to reduce the effect of fluid flows driven by the lateral

boundary. The procedure discussed below details how the stability region for hexagons

was measured in BMC for a control parameter range 0 . ε . 1, where ε = M−Mc
Mc

is the

reduced Marangoni number. The hexagons near the rigid lateral boundary where pinned

by the laser to mitigate the boundary’s influence on the hexagons in the interior region of

the convection cell.

3.2.1.1 Creating Initial Conditions

A hexagonal pattern can be decomposed into three component roll patterns oriented 120◦

with respect to one another. Thus a gray-scale camera image of the pattern can be repre-

sented as

I(x, y) =
3∑

j=1

Aj(x, y)eiqj ·x + c.c., (13)

where, for an ideal hexagonal pattern, the Aj(x, y) = A and |q1| = |q2| = |q3| = q.

Computing the Fourier transform F (qx, qy) of I(x, y) using the FFT algorithm provided in

the Matlab software package and displaying the power spectrum |F |2 (Fig. 15) reveals six

peaks whose vertices are at the centers of the vectors qj and −qj . To extract the roll pattern

associated with wave vector q1 the peaks at q1 and −q1 are multiplied by a circular window

of suitable radius that has a smooth transition at the cutoff (such as a Butterworth filter).

An inverse Fourier transform is then performed and yields the corresponding straight roll
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Figure 16: Decomposition of an imposed ideal hexagonal pattern into three plane waves
oriented 120◦ with respect to one another. Each plane wave is perpendicular to two sides
of the imposed boundary shown in (a) by the dashed lines. By moving opposite walls of
the boundary the wave number of each plane wave can be varied by ≈ 5% independently
of the other two plane waves that make up the pattern.
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(a) (b)

Figure 17: (a) Ideal hexagonal pattern formed by superposing three plane waves oriented
120◦ with respect to each other. (b) Hexagonal array of points corresponding to the centroids
of the peaks of the pattern.

pattern (Fig. 16(b)). The same procedure is followed to obtain the roll patterns associated

with the other two wave vectors.

To create an initial condition of regular hexagons on the BMC experiment a hexagonal

array of points each corresponding to individual hexagons of the pattern must first be

generated. The array is created by superposing three plane waves oriented 120◦ with respect

to one another and then determining the coordinates of the centroids of the peaks of the

resulting pattern (Fig. 17). By adjusting the coordinates, the wave number of each of the

individual component rolls of the imposed patterns can be set. This involves stretching or

squeezing the array of points uniformly in a given direction to adjust the wave number of

the component rolls of the imposed patterns relative to each other, and then multiplying

by the appropriate scale factor to obtain the target wave number values (Fig. 18). Fine

adjustment of the wave number of a component roll after the pattern has been imposed

is possible by slightly shifting the edges of the imposed boundary that are parallel to the

target rolls (Fig. 16(a)). (Recall that lasing is continued at the boundaries after it has been

turned off in the interior 75% of the cell.) The other boundary edges are also moved slightly

in the process to ensure uniform stretching of the component roll throughout the interior

non-lased section.
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(a) (b)

direction of stretch

Figure 18: Hexagonal array of points (a) before and (b) after uniformly stretching by a
factor of 0.9 in a fixed direction to adjust the wave number of the component rolls relative
to one another.

(b)(a)

Figure 19: Hexagonal patterns that have become unstable as a result of being imposed
with wave number outside the stable band. (a) Imposed q too high. b) Imposed q too low.
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3.2.1.2 Measuring the Band

The width of the stable band at the Pr corresponding to the silicone oil used in the experi-

ments is measured by imposing ideal hexagons at fixed ε and then tracking the evolution of

the wave number q1 = q2 = q3 = q. After the initial condition is set by the laser, images are

taken at intervals of ∼7τv for a duration of ∼400τv. A background image, taken at control

parameter ε set below onset when no pattern has formed, is subtracted from each image to

improve the signal-to-noise ratio. The images are then demodulated as described above to

extract the three component rolls of the pattern and their wave number. The average of

the measured qj ’s is computed and is plotted against time. The procedure is repeated for

a range of different initial q values at the same ε to produce a plot like that of Fig. 20. If

the imposed q is within the stable band then the average of the three qj does not change

appreciably, and has been observed to persist for over ∼ 104τv. However for an imposed

q that is too large or too small the pattern becomes unstable leading to the formation of

defects at the boundary or within the bulk of the pattern (Fig. 19). The defects propagate

through the pattern and significantly alter its average wave number, as is shown by the ×
symbols in Fig. 20. The largest and smallest q for which the wave number is stationary

form the boundary of the band at that ε. The process is repeated for a range of ε values to

form the stable band for the given Pr.

3.2.2 Secondary Instabilities

Busse et al. identified the mechanisms of secondary instability that restrict the region of

stable straight convection rolls in RBC [8]. Unstable straight rolls were observed to tran-

sition to states with stable wave number through striking phase or amplitude instabilities,

such as the zig-zag and cross-roll instabilities (Fig. 21).

The nature of secondary instability in more complex patterns such as triangles, squares

and hexagons is not as well studied and understood. For hexagons there are some sugges-

tions as to the nature of the instability mechanisms [13, 14] but no controlled experimental

investigations have heretofore been conducted. Moreover, unlike in the case of straight

rolls, the mechanisms are not easily distinguishable by eye, as Fig. 22 illustrates. Thus

32



q

t

Figure 20: Time evolution of average wave number q of ideal hexagonal patterns illustrates
stable vs unstable wave numbers for ε = 0.28. Time is in units of τv. q represents the average
of q1, q2, q3; the variance of q is typically much smaller than the symbol size. Average wave
numbers q that are time-independent correspond to stable ideal hexagonal planforms (•).
By contrast, time-dependent q correspond to patterns of initially ideal hexagons (t = 0)
that lose stability (×). The shaded area shows the extent of the stability region for ideal
hexagons predicted by theory in [26] for the same ε.
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(b)

(a)

Figure 21: Secondary instability of straight roll patterns observed in RBC. (a) Cross roll
instability – rolls with q that is too large decrease in amplitude and are replaced with rolls
of smaller q oriented at 90◦ with respect to the original ones. (b) Zig-zag instability – Rolls
with q too small form “zig-zags” which reduce the spacing between the rolls, effectively
raising q. As the zig-zags increase in amplitude neighboring rolls join and form new rolls.
(From Busse et al. [8].)
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(a)

(c) (d)

(b)

Figure 22: Evolution of a hexagonal pattern with q too small. The data is for ε = 2.01
which corresponds to a measured low q boundary of ε = 2.04. The images are taken ∼ 5τv

apart.

the approach of our investigations has been to impose predetermined perturbations as ini-

tial conditions and to then measure their stability. Bestehorn’s analysis suggests that the

instabilities in BM convection when surface tension is dominant are due solely to phase

perturbations [26]. While their nature was not determined in that study, amplitude equa-

tion analyses suggest that the instabilities in hexagonal patterns correspond to two different

types of long-wavelength modulations of the phase of the pattern [13, 14]. A review of the

main ideas that lead to this conclusion are presented in Section 3.2.2.1 below. A more

detailed derivation can be found in Refs. [13, 14, 15].

3.2.2.1 Phase Instabilities

The instabilities are determined by imposing amplitude and phase perturbations to the

stable hexagon solutions
∑3

j=1 Aje
iqcnj ·r + c.c. of the amplitude equations (where qc is the
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critical wave number and A1 = A2 = A3 = H(ε, α, γ, q) 6= 0)

∂tAi = εAi + (n̂i · ∇)2Ai + αA∗jA
∗
k − (|Ai|2 + γ|Aj |2 + γ|Ak|2)Ai, (14)

and then determining the unstable modes.

Perturbations of the form Aj = HeiQj ·r(1+aj + iφj) are substituted into the amplitude

equations, where Qj = qj − qcnj , and aj and φj are the amplitude and the phase pertur-

bations respectively. Linearizing the resulting equations yields six equations in the aj and

φj . For vanishing k, the wave number of the phase perturbations, the perturbations aj in

the amplitudes adiabatically follow the phase dynamics and are eliminated along with the

total phase φ1 + φ2 + φ3. That leaves φ2 and φ3 which together can be used to express a

phase vector Φ = [−(φ2 +φ3), (φ2−φ3)/
√

3]. The equations can then be written as a linear

diffusion equation of the phase of the hexagons:

∂tΦ = D⊥∇2Φ + (D‖ −D⊥)∇(∇ ·Φ).

D⊥ and D‖ are functions of ε, α, γ and Q and are the transverse and longitudinal diffusion

coefficients. They are analogous respectively to the velocity of transverse waves ct and

longitudinal waves cl in the wave equation for an elastic solid. By that analogy the phase

can be split into a transverse part Φt that satisfies ∇ ·Φt = 0 and a longitudinal part that

satisfies ∇×Φl = 0. It can be proved that

∂tΦt = D⊥∇2Φt, ∂tΦl = D‖∇2Φl

Linear-stability analysis shows that the phase perturbations are stable if both D⊥ > 0

and D‖ > 0. Thus D⊥ = 0 determines the boundary of instability to transverse perturba-

tions while D‖ = 0 determines the boundary of instability to longitudinal phase perturba-

tions. Therefore long-wavelength transverse and longitudinal phase perturbations are the

unstable phase modes for hexagonal patterns.

The phase perturbations are characterized by their wave vector k and its direction θ

measured with respect to one of the wave vectors – in the experiments θ was measured with

respect q1. For the longitudinal phase perturbation in the limit k → 0, Φl ‖ k, and for the

transverse perturbation Φt ⊥ k.
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Figure 23: A shadowgraph image (a) of hexagons with a longitudinal phase perturbation is
shown with the pattern’s three roll components (b-d) extracted by complex demodulation.
For the purposes of illustration, the perturbation, imposed as an initial condition, is shown
with an amplitude that is larger than typical modulations by a factor of 8. In (a), the
white edges and dark centers of the hexagons indicate, respectively, regions of down-flow
and up-flow. (b) The main modulation is to the q1 rolls – note their compression and
dilation. Shading has been added to emphasize the long-wave nature of the modulation –
the overall lighter areas have higher wave number than the darker regions. (c) q2 rolls are
sheared slightly by the modulation.(d) The q3 rolls are modulated with the same amplitude
and phase as the q2 rolls.
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Figure 24: Spatial and temporal evolution of the longitudinal phase perturbation. (a)
The profile of the local wave number of the q1 rolls (scaled by the mean value q = 2.08) is
plotted at times t = 0 (symbol −), t = 13 (−−) and t = 27 (·−); thus the phase modulation
adjusts the overall wave number by a maximum of less than 1.5%. The long-wave nature
of the perturbation is apparent – the modulation wave number k = 0.14 is approximately
1/15th of the mean q. (b) The amplitude (kα) is plotted as a function of time on a semi-log
scale; the slope of this curve yields the growth rate, which is negative for perturbations
within the stable band.
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Figure 25: A shadowgraph image (a) of hexagons with a transverse phase perturbation is
shown with the pattern’s three roll components (b-d) extracted by complex demodulation.
For the purposes of illustration, the perturbation is shown with an amplitude that is larger
than typical modulations by a factor of 9. (b) The q1 component is unaffected by the
transverse modulation. (c) The roll component labeled by wave vector q2 that shows the
shearing of the rolls in a direction transverse to the q1 rolls. (d) The q3 component is
modulated with the same amplitude but opposite phase as the q2 component.
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To study the dynamics of longitudinal and transverse phase perturbations experimen-

tally, perturbations suggested by Young and Riecke [40] were imposed. Taking θ = 0, the

phase perturbations applied to the q1, q2 and q3 component roll patterns are respectively

φ1 = iα cos kx, φ2 = −i1
2α cos kx and φ3 = −i1

2α cos kx for the longitudinal perturbation,

where x is parallel to q1 (Fig. 23). The perturbation appears as a sinusoidal modulation,

with amplitude kα, of the wave number of the q1 rolls parallel to k (Fig. 24(a)). The

q2 and q3 rolls also have wave-number modulations parallel to k but with half the ampli-

tude. For a transverse perturbation at θ = 0, the φj are φ1 = 0, φ2 = i
√

3
2 α cos kx and

φ3 = −i
√

3
2 α cos kx. The result is a sinusoidal modulation of the q2 and q3 rolls parallel to

k with amplitude
√

3
2 kα, but no perturbation of the q1 rolls (Fig. 25).

The longitudinal phase perturbations for arbitrary angle θ are given by

φ1 = iα cos θ cos[k(x cos θ + y sin θ)],

φ2 = −i
1
2
α(cos θ −

√
3 sin θ)(cos[k(x cos θ + y sin θ)],

φ3 = −i
1
2
α(cos θ +

√
3 sin θ) cos[k(x cos θ + y sin θ)];

and the transverse phase perturbations are:

φ1 = −iα sin θ cos[k(x cos θ + y sin θ)],

φ2 = i
1
2
α(sin θ +

√
3 cos θ)(cos[k(x cos θ + y sin θ)],

φ3 = i
1
2
α(sin θ −

√
3 cos θ) cos[k(x cos θ + y sin θ)].

To investigate the mechanisms of secondary instability, the longitudinal and transverse

phase perturbations are applied at fixed ε to the hexagonal patterns and their growth rates

are measured. The perturbations decay exponentially within the stable band at rates that

depend on q. The perturbation growth rates are measured by tracking the amplitude of the

sinusoidally modulated wave number of one of the component rolls − the other modulated

rolls are found to decay at approximately the same rate. A plot of the logarithm-of-the-

amplitude versus time fits reasonably well to a straight line (Fig. 24(b)) as expected for

small disturbances. The slope of the line yields the growth rate. The procedure is repeated

for q values that span the stable band.

40



The growth rate, i.e., the slope of the logarithm-of-the-amplitude versus time graph is

obtained using linear regression analysis, discussed in Appendix B and Ref. [24], and its

error is estimated from the standard error of the slope.

3.2.3 Penta-Hepta Defects

Point defects in roll patterns appear as dislocations and play a role in pattern selection [7].

For an isolated dislocation in a pattern of straight rolls, such as in Fig. 26 for RBC, there

is a wave number qu above the dislocation that is different from ql below the dislocation

– in Fig. 26 ql > qu as there is an “extra” roll below the dislocation. The defect “climbs”

upward if ql is the preferred wave number and downward if qu is preferred. If the defect

does not move then the preferred wave number is ql < qd < qu and is referred to as the

“optimal” wave number. Asymptotically far from the defect ql = qd = qu. Motion normal

to the rolls is called “glide” and does not change the overall wave number of the pattern.

The speed of the defect depends on q − qd.

In hexagonal patterns the most common point defect is a PHD, which is a five-sided

cell next to a seven-sided cell (Fig. 27(a)) embedded in a pattern of hexagons. It can be

considered as a state of two bound dislocations of opposite phase-winding number in two

of the three component rolls that make up the pattern [36]; i.e., for any counterclockwise

path encircling the defect core there is a phase jump of −2π for one of the rolls with a

dislocation (Fig. 27(b)) and 2π for the other (Fig. 27(c)). Detailed theoretical and numerical

studies amplitude equation studies by Tsimring [15] of the speed and direction of motion

of a single PHD suggest that PHDs play the role of wave number selection mechanisms

in hexagonal patterns. Corresponding detailed experimental study of PHD motion has

not been performed. Work on PHDs done by Ciliberto et al. [23] involved inducing a

pair of PHDs by focusing light from a powerful lamp onto a single location of a RBC cell

and studying their characteristics. However, the technique does not enable control of the

background wave number of the pattern which strongly influences PHD motion [15].

41



ql

qu

dislocation

Figure 26: Climb motion of a single dislocation in a roll pattern in RBC. The wave number
above the defect qu is “preferred” over that below the defect ql hence motion downward.
(Adapted from Cross and Hohenberg [7].)
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Figure 27: Decomposition of an imposed hexagonal pattern with a PHD embedded near
its center. (a) The five-sided cell of the PHD has dark shading and the seven-sided cell
has light shading. The q1 (a) and q3 (c) rolls have dislocations while the q2 rolls(d) are
dislocation-free. The dislocations have opposite winding phase numbers. In this case any
counter-clockwise close path encircling the defect has a jump of −2π for q1 and +2π for
q3.
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3.2.3.1 Theoretical Analysis

This section is an overview of a detailed analysis of PHD motion presented in [15]. It

begins by considering a stationary PHD and then proceeds to outline the method used to

determine the speed and direction of motion of an isolated PHD.

A hexagonal pattern can be written as
∑3

j=1 Bje
i(qcnj+Qj)·r + c.c., where qc is the “op-

timal” wave number, which is at the center of the stable band; Qj are “corrections” to the

optimal wave vectors, and satisfy the resonance condition
∑3

j=1 Qj = 0; and n1 = (1, 0),

n2 = (−1
2 ,
√

3
2 ) and n3 = (−1

2 ,−
√

3
2 ). The Bj are functions of the rescaled variables

R = ε1/2r, and satisfy the following three equations, which are derived directly from Eqs. (2)

∂T Bi = (µ−Q2
i )Bi+(n̂i ·∇)2Bi+2iQi(n̂i ·∇)Bi+B∗

j Bk
∗−(|Bi|2+γ|Bj |2+γ|Bk|2)Bi, (15)

with {i, j, k} = {1, 2, 3}, {2, 3, 1}, {3, 1, 2}. The spatial gradients are calculated with respect

to R.

For the special case when all Qj = Q, the Bj can be expressed analytically as

B0
j = B0 ≡ 1 +

√
1 + 4(µ−Q2)(1 + 2γ)

2(1 + 2γ)
.

A hexagonal pattern of infinite spatial extent with a single PHD is still largely hexagonal

and can also be represented by
∑3

j=1 Bje
i(qcnj+Qj)·r + c.c. In that case all the information

about the defect is contained in the slowly varying amplitudes Bj(x, y).

When Qj = 0 the PHD is found to be stationary. Without loss of generality the PHD can

be chosen such that the phase winding number around its core for the rolls corresponding

to q2 is 2π, and is −2π for the q3 rolls, and 0 for the q1 rolls. Then a PHD solution to

Eq. 15 can be written as

Bj = Fj(R, φ)eiθj(R,φ), (16)

where R and φ are polar coordinates. The condition of phase-winding number equal to

0 for the q1 rolls means
∮
C ∇θ1ds = 0. Similarly for the q2 rolls,

∮
C ∇θ2ds = 2π, and

∮
C ∇θ3ds = −2π for the q3 rolls. F2(0, φ) = 0 and F3(0, φ) = 0, while Fj(∞, φ) = B0, for

all j. This solution cannot be expressed in a closed analytical form. However, in the far field
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where the Bj approach B0, the following solutions for the phases θj have been proposed

[35]

θ1 = (1− cos 2φ)
√

3
6

, (17)

θ2 = φ−
[
1
2
− cos

(
2φ− 2π

3

)]√
3

6
, (18)

θ3 = −φ−
[
1
2

+ cos
(

2φ− 2π

3

)]√
3

6
, (19)

For the case when Qj 6= 0, the PHD is not stationary. Tsimring’s analysis then as-

sumes as an ansatz that the PHD moves with a constant velocity V. Then a coordinate

transformation R′ = R−VT into the moving frame yields the following from Eqs. (15)

−V·∇Bi = (ε−Q2
i )Bi+(n̂i·∇)2Bi+2iQi(n̂i·∇)Bi+B∗

j B∗
k−(|Bi|2+γ|Bj |2+γ|Bk|2)Bi, (20)

A transformation of Eqs. (20) into the (ξ, η) coordinate frame is performed, where

ξ = X cosψ + Y sinψ and η = Y sinψ − X cosψ are respectively the coordinates along

the direction of PHD motion and orthogonal to it. Variable ψ is the angle between the

direction of PHD motion and the X-axis. The resulting equations are then projected onto

the translation modes {∂ξB
∗
j } and {∂ηB

∗
j }, yielding

IηηVη + IηξVξ = −i

〈
3∑

j=1

Qj∂ηB
∗
j (n̂j · ∇)Bj − c.c.

〉
,

IηξVη + IξξVξ = −i

〈
3∑

j=1

Qj∂ξB
∗
j (n̂j · ∇)Bj − c.c.

〉
,

where

Iξξ =

〈
3∑

j=1

|∂ξBj |2
〉

,

Iηη =

〈
3∑

j=1

|∂ηBj |2
〉

,

Iξη = Iηξ =
1
2

〈
3∑

j=1

∂ξBj∂ηB
∗
j + c.c.

〉
,

〈
. . .

〉
=

∫∫
. . . dXdY and

〈
∂XBj∂Y B∗

j

〉 − c.c = iδj |B0
j |2. The phase-winding number is

represented by δj , thus δ1 = 0, δ2 = 2π and δ3 = −2π. All other terms on the right-hand

45



side of Eq. 20 vanish on integration. The remaining equations can be written as

Î ·V =




Iξξ Iξη

Iηξ Iηη







V

0


 =




T 1

T 2


 , (21)

where

T 1 = 2π[|B0
2 |2Q2 sin(ψ − 2

3
π)− |B0

3 |2Q3 sin(ψ +
2
3
π)],

T 2 = 2π[|B0
2 |2Q2 cos(ψ − 2

3
π)− |B0

3 |2Q3 cos(ψ +
2
3
π)],

and Î is called the mobility tensor of the PHD.

The angle and speed of the PHD motion are determined through lengthy calculations

of the components of the mobility tensor. The region of integration of the components is

split into two parts: an inner region that uses the stationary PHD solution, Eq. (16), and

an outer region that uses the phase approximation, Eqs. (17)-(19). The results are the

following nonlinear algebraic equations that relate V , ψ, Q2, and Q3

5
2
V ln(w1V ) + V ln(w2V ) cos 2ψ = 2Q2 sin(−ψ + 2π/3) + 2Q3 sin(ψ + 2π/3), (22)

V ln(w3V ) sin 2ψ = 2Q2 cos(−ψ + 2π/3)− 2Q3 cos(ψ + 2π/3), (23)

3.2.3.2 Experiments

PHDs are studied experimentally in this investigation by imposing a single PHD in a pattern

of hexagons with a range of different wave numbers for each of the component roll patterns.

The speed and direction are then measured and plotted as a function of wave number.

A template of the coordinates of the pattern containing a single PHD is created from

the following equations for the phases and amplitudes of the component rolls [36]:

A1 = A0
1 tanh{0.2[(X1 −X0

1 )2 + (Y1 − Y 0
1 )2]1/2}

φ1 = arctan[(Y1 − Y 0
1 )/(X1 −X0

1 )] + φ0

A2 = A0
2, φ2 = 0

A3 = A0
3 tanh{0.2[(X3 −X0

3 )2 + (Y3 − Y 0
3 )2]1/2}

φ3 = − arctan[(Y3 − Y 0
3 )/(X3 −X0

3 )],
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(a) (b)

Figure 28: Illustration of grid of points obtained from a hexagonal pattern containing
a single PHD is obtained. (a) Numerically obtained gray scale image with a PHD in the
center. (b) Grid of points to be used for imposing the pattern onto the BM convection cell
obtained by the finding the centroids of the peaks in (a). The dashed lines indicate rows of
extra cells or points. The boxes are centered around the defect core.

where (X1
0, Y1

0) and (X3
0, Y3

0) are the coordinates of the cores of the dislocations, A0
j =

0.01 and φ0 = π/4. As in the case of an ideal hexagonal pattern the Aj are superposed and

an array of points containing a PHD is obtained by finding the coordinates of the centroid

of each peak in the gray-scale pattern as in Fig. 28.

The pattern with a PHD is imposed for different qj and the direction of motion as well as

the average speed is measured. For each roll pattern the qj for which the PHD is stationary

is noted – this is the so-called optimal wave number for the roll pattern and is in the center

of the stable band.

3.2.3.3 Image Analysis

Measurement of q for the roll components of a pattern with a PHD differs from the method

used above for an ideal pattern. In that case q for each component roll pattern is obtained

by computing the distance from the origin of the peaks in the power spectrum of the Fourier

transform. That method is inaccurate when applied to a pattern with a PHD because the

wave number of the component roll patterns with dislocations is nonuniform near the PHD

core (Fig. 29(c)). For an ideal PHD each qj becomes uniform asymptotically far from the

core of the PHD. A satisfactory approximation of that value is the average of the local
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Figure 29: Local wave number of the q3 roll pattern along a line through a single penta-
hepta defect. (a) Shadowgraph image of PHD taken with ε = 3.8. The dark colored patch
is the five sided cell and the light patch is the seven sided cell. (b) The corresponding q3

roll pattern. (c) Cross-section of the local wave number of the mode along the dashed line
indicated in (a) and (b). The wave number from the core to “A” is lower than the wave
number from the core to “B” because it has one less row. In the ideal case the lower (high)
wave number increases (decreases) asymptotically to a value which defines the wave number
of the rolls. The wave number is well approximated by taking the average of the two over
a range of several wavelengths away from the defect core. In this case the average wave
number is q3 = 2.39.
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q measured from either side of the PHD along a line that is perpendicular to the wave

vector of the rolls and that passes through the core. The local wave number measurements

are taken starting several wavelengths away from the core to avoid the region where q

changes significantly over a few wavelengths. Matlab code that performs local wave number

measurements of striped patterns was written by Chiam and Paul [33] and is based on an

algorithm developed by Egolf et al. [34].

The position of the PHD is tracked by locating the singularity in the phase in either one

of the roll patterns with a dislocation [23]. Finding the singularity involves first demodu-

lating the image of the pattern to obtain the complex amplitude of one of the component

rolls with a dislocation and then computing its phase. As mentioned above a pattern with

a large number of hexagons containing only a single PHD is otherwise a regular hexagonal

pattern. Thus the gray-scale camera image can still be represented as in Eq. (13), where the

details of the PHD are contained in the Aj(x, y). To extract A1(x, y) from the peak that

corresponds to A1(x, y) exp(iq1 ·x) in the power spectrum |F |2, F (qx, qy) is shifted by −q1

to locate peak 1 at the origin in Fourier space. The shifted F (qx, qy) is then multiplied by a

low pass filter with a cutoff in the range of the peak width and an inverse Fourier transform

is performed to obtain the complex amplitude A1(x, y). The phase is then straightforwardly

obtained from arctan(Im[A1(x, y)]/Re[A1(x, y)]) and typically looks like Fig. 30. The sin-

gularity in the phase appears as a sharp peak in a spatial derivative of the phase – Fig. 29

shows the peak that results from the gradient of the phase, i.e. the wave number.

Analysis of the defect position shows that the two dislocations associated with the PHD

are slightly offset from one another. Thus, to track the PHD the same dislocation must be

used. Use of the other dislocation yields similar results.

The average direction and speed of the PHD for a typical experimental run are measured

from the set of coordinates of the PHD’s position generated from the time series of images

taken during the experiment. Linear regression [24] is used to compute the straight line

y = a+bx that points in the average direction of motion. An error estimate of the direction

measurement is computed from the standard error in the estimate of the slope b. The

average speed is computed from the slope of the distance versus time graph, and its error
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Figure 30: Illustration of the phases (b), (d), (f) of the slowly varying amplitudes of the
components roll patterns (a), (c), (e) of a single PHD.
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is also estimated from the standard error of the slope. Appendix B gives an outline of the

linear regression analysis used.
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CHAPTER IV

RESULTS AND CONCLUSIONS

4.1 Stable Band

The experimentally measured stable band for hexagons in Bénard-Marangoni convection

(BMC) is plotted in Fig. 31 along with the theoretical prediction by Bestehorn [26] for com-

parison. There is quantitative agreement with theory for ε < 0.5 at the low-q boundary. At

the high-q boundary the agreement is qualitative – there is a clear shift both experimentally

and theoretically of the boundary toward higher q as ε is increased. For larger ε however,

the agreement is worse – the size of the band is well estimated but the predicted shift of

the band to higher q with ε is not observed. There are several factors that may account

for the differences between theory and experiment. Buoyancy effects are significantly larger

in the theoretical analysis where Γ = M/R ≈ 2.7, compared with Γ ≈ 8.5 in the exper-

iment. The Prandtl number Pr in the theoretical model is assumed to be infinite while

the silicone oil used here has Pr ≈ 100. Of smaller impact may be the differences in Biot

number. At the aluminum-silicone oil boundary Bi ≈ 103 compared with the theoretically

assumed Bi →∞; and Bi ≈ 0.2 in the experiment at the silicone-oil-air interface compared

with Bi = 0.1 for the theoretical model. (Busse et al. attributed shifts in their measured

boundary from the theoretical predictions in Rayleigh-Bénard convection (RBC) to finite

conductivity effects [8].) The finite time over which the pattern was monitored for stability

may have resulted in an overestimation of the width of the stable band. Near the outside

edge of the boundary the growth rate of perturbations is small, thus the time scale over

which the pattern breaks down is large. Typical observation times were ∼103τv but only

∼102 horizontal diffusion times, which may be insufficient time for perturbations of long

wavelength to grow.
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Figure 31: The band of stable wave numbers q for ideal hexagonal patterns (q1 = q2 =
q3 = q) is shown for a range of reduced temperatures ε. The experimentally determined
stable wave numbers lie between the low- and high-q boundaries (•) and are compared with
the theoretical predictions (solid lines) of Bestehorn [26].

4.1.1 Remarks

Amplitude equation analyses by Echabarria and Pérez-Garciá [13], and Young and Riecke

[14] are carried out with the assumption of a pattern of infinite lateral extent. Their results

predict a larger region of stability at small values of the control parameter ε. This is

expected, as the range of stable solutions is reduced by the presence of boundaries – an

effect shown theoretically [7] for straight rolls in Rayleigh-Bénard convection, where the

stability band reduces in width from ∼ε1/2 to ∼ε.

The failure of an earlier study by Cerisier et al. to observe stationary behavior for pat-

terns of any q underscores the importance of mitigating the effects of the lateral boundary.

In our early investigations it was noted that with an aluminum sidewall the pattern does

not settle down even after waiting ∼104τv. The pattern becomes stationary when the side-

wall is replaced with one made of Teflon which is more closely matched in conductivity to

the silicone oil. However, this is preceded by a period of ∼102τv during which additional

hexagons form at the boundary for patterns with small q or disappear at the boundary for
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patterns with large q. Thus the resulting measured stable band is smaller than predictions.

A satisfactory solution is to continue to lase a “boundary” of several cells thick in the outer

75% of the convection cell after imposing the initial condition. The effect is to pin those

cells thereby virtually eliminating the problem of large scale cell creation and destruction at

the boundary. However, when the pattern does go unstable the breakdown occurs mostly

at or near the pinned boundary. Nevertheless the resulting measured stability region shown

in Fig. 31 is close in size to the theoretical prediction of Bestehorn.

The measured stable region in Fig. 31 represents a slice of the full region of stability

for hexagons, which is expected to also depend on Pr as in the case of RBC (Fig. 32). As

in RBC there is an upper limit in ε of the stability region for hexagons, i.e., the slice of

Fig. 31 has an upper bound. In experiments described in Ref. [37], hexagons lose stability

to squares at ε ∼ 2.4.

4.2 Secondary Instability

Secondary instabilities are identified by observing the behavior of their growth rates at the

boundaries of the stable band. The growth rate of the transverse perturbation is found to

remain relatively constant and negative for 2.2 . q . 2.55, but starts to gradually decrease

in magnitude for q . 2.2, and appears to tend to zero at the low-wave-number boundary

(Fig. 33). This suggests that the divergence-free transverse perturbation becomes unstable

at the low wave number side of the stable band and is thus responsible for the instability at

that boundary. At the high wave number boundary the magnitude of the growth rate is not

reduced, i.e., the transverse modulation does not appear to restrict the band at high wave

number. For the longitudinal-phase perturbation, the measured growth rate is finite at the

low-wave-number boundary and remains constant for 2.05 . q . 2.4. As q approaches the

high-wave-number boundary, the change in growth rate is not slow as in the transverse case,

but becomes increasingly sharp the closer q gets to the boundary, and appears to tend to

zero growth rate at the boundary (Fig. 34), i.e., the longitudinal perturbation may be the

secondary instability that restricts the stable band at high wave number.
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Figure 32: The Busse balloon – a three-dimensional region of stable straight convection
rolls in R-P-α (Rayleigh number-Prandtl number-wave number) space. (From Busse [22].)
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Figure 33: Plot of growth rate vs. wave number for the transverse perturbation. The
dashed lines represent experimentally measured boundaries of the stable band measured
previously for ε = 0.46. The data are shown for θ = 0 (×,◦), θ = π/18 (¤), θ = π/12 (♦),
θ = π/6 (B), θ = π/3 (M), and θ = 2π/3 (O).

4.2.1 Angular Dependence of Perturbations

Amplitude equation analyses [14, 15] suggest that phase perturbations with a finite phase-

modulation wave number k are neither purely transverse nor purely longitudinal, i.e., for

longitudinal perturbations Φl is not parallel to k and for transverse perturbations Φt is

not perpendicular to k. (Recall that the derivation of the phase equation assumed k → 0.)

In that case there is a “mixing” of the phase perturbations which is a function of θ, the

angle between k and the q1 wave vector. The mixing is in general non-zero except for

discrete θ = nπ/6, where n is an integer. A consequence is that the growth rates of phase

perturbations are also expected to be functions of θ. Thus to investigate the mixing in

the experiment, the two types of phase perturbation were applied at different angles, with

k = 0.14 and at two different values of q inside the stable band, and their growth rates

were measured. As predicted by the theory the results were not significantly different for

θ = nπ/6, for n = 1, 2 and 4 (Figs. 33 and 34), indicating little or no angular dependence.

For θ = π/12 and π/18, where the mixing is expected to be strong, the growth rates were
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Figure 34: Plot of growth rate vs. wave number for the longitudinal perturbation. The
dashed lines represent experimentally measured boundaries of the stable band for ε = 0.46.
The growth rate of the longitudinal perturbation appears to sharply decrease and trend to
zero at the high-wave-number boundary. The data are shown for θ = 0 (×,◦), θ = π/18
(¤), θ = π/12 (♦), θ = π/6 (B), θ = π/3 (M), and θ = 2π/3 (O).

not significantly different, suggesting that k is small enough that phase mixing is weak.

4.2.2 Remarks

The angular independence of the growth rate for k → 0 adds to the difficulty of identifying

the instability mechanism as the pattern breaks down. A transverse-phase perturbation

with k at θ = 30◦ destabilizes the pattern at the low-q boundary but looks qualitatively

different to the eye from the transverse perturbation with k at θ = 0◦. To identify the

instability mechanism by working backward from a pattern at the edge of the stable band

it is necessary to first know the direction of k and then to demodulate appropriately. Thus

we were not able to confirm the nature of the instabilities at either boundary by imposing

an ideal pattern and observing it as it breaks down.

Mechanisms other than phase instabilities might also play a role in limiting the stable-

wave-number band. The growth rate data conclusively show that the transverse perturba-

tion becomes unstable at the low-q boundary (Fig. 33). The data are less convincing at the

high-q boundary where the growth rates of the longitudinal perturbation are tending toward
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zero so rapidly that the resolution of our experimental setup is insufficient to resolve very

small growth rates near the boundary (Fig. 34). In principle, amplitude instabilities could

limit the stable band at high q; however, theoretical work on Bénard-Marangoni convection

[26] suggests that when buoyancy effects are weak, amplitude instabilities play no role in

secondary instability of hexagons.

Some insight into the ε dependence of secondary instability mechanisms can be gained by

comparing these results with the measurements of the stable wave-number band. The mea-

sured low-q boundary does not change significantly for 0 < ε < 1 suggesting that the trans-

verse phase instability is the mechanism that limits the stable band for that range. Similarly,

the high-q boundary remains unchanged for 0.4 . ε < 1, suggesting the longitudinal-phase

instability governs the high-q limit. However, for ε . 0.4 the high-q limit depends strongly

on ε. Thus, by analogy with the Busse balloon for straight rolls, where a change in the

nature of the ε dependence of the stability boundaries can indicate transitions between dif-

ferent mechanisms, it is possible that the dominant instability mechanism may change (say

from a longitudinal- to a transverse-phase instability) as ε is decreased below 0.4. Future

experimental work could explore this aspect. Complementary theoretical and numerical

studies could investigate the importance of amplitude instabilities at those boundaries too.

4.3 Penta-hepta Defects

As motivated in Chapter III, secondary phase instabilities occur for pattern wave numbers

outside the stable band and lead to the formation of penta-hepta defects (Fig. 35). The

motion of the PHDs then adjusts the wave number of the pattern back into the stability

region. The following sections present experimental results of investigations of the motion

of a single PHD embedded in a hexagonal pattern and compare them with theoretical

predictions.

4.3.1 Trajectory and Speed of PHD

The PHD is a state of bound dislocations in two of the three roll patterns that make up the

hexagonal pattern. Its motion adds or removes rolls from the components that make up

the pattern as their respective dislocations move, thereby altering the overall wave number.
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(a) (b)

(c) (d)

Figure 35: Pairs of PHDs forming spontaneously from an initially ideal hexagonal pattern
with q too small. The dark cells are five-sided and the light cells are seven-sided. The
defects propagate outward and increase q in the process.
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Figure 36: The trajectory of an isolated PHD for (a) equal and (b) unequal wave numbers
at ε = 0.28. Each circle represents the position of the PHD in intervals ∼τv. The dashed
arrows indicate direction of PHD motion. The trajectories are plotted on the defect-free
mode q2. (a) For Q1 = Q2 = Q3 = 0.16 the path is roughly parallel to q2. (b) Trajectory
after Q3 is decreased by 0.6.

As in the case of roll patterns the motion depends on the Qj = qj − qd, the wave number

“corrections” to the optimal wave number of the pattern. If Qj = 0 for both component

roll patterns with dislocations then the PHD does not move.

Without loss of generality the labeling of the roll patterns from Tsimring’s paper are

changed in the following discussion for convenience to allow easy comparison with our ex-

perimental results. Thus, as in the experiments, Q1 refers to the roll patterns of Tsimring’s

analysis that have a dislocation of phase-winding number +2π. Q3 refers to the roll pattern

with a −2π phase-winding number dislocation, and Q2 refers to the dislocation-free rolls.

The following three distinct initial conditions were considered in the theory and exper-

iments:

4.3.1.1 Q1 = Q3

A main result of Tsimring’s theoretical and numerical studies [15] is the prediction that when

the wave number corrections of the roll patterns with dislocations are equal and non-zero,

the PHD motion is parallel to the wave vector of the dislocation-free rolls. The direction

of motion is not affected by small changes in the wave number of the dislocation-free rolls.
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However, a change in the wave number of either roll pattern with a dislocation strongly

affects the direction. Fig. 36(a) shows the path of a PHD imposed in the experiment for

Q1 = Q2 = Q3 = 0.16. The overall direction of motion is clearly parallel to q2 the wave

vector of the dislocation-free roll pattern. The background wave number of the pattern is

larger than the optimal wave number and the PHD motion is, as expected, in a direction

that reduces q1 and q3. From the symmetry of the pattern the motion parallel to q2 is

the only unbiased direction reducing q1 and q3 at an equal rate. Adjustments made to Q2

did not change the direction of motion significantly enough to yield a measurable effect.

However, making Q3 = 0.1 while keeping Q1 = 0.16 causes a substantial change in the

direction (Fig. 36(b)). In that case Q1 is farther from the optimal value than Q3 and the

PHD moves in a direction that reduces Q1 at a quicker rate than it reduces Q3.

4.3.1.2 Varying Q3 while Q1 = Q2 = 0

Quantitative predictions of the path and speed of the PHD motion as a function of Q3 are

computed by Tsimring [15]. Fig. 37 plots the direction of motion, ψ, vs. Q3 and the speed,

v, vs. Q3 when Q1 = Q2 = 0. The direction of motion is approximately parallel to q2,

the wave vector of the other roll pattern with a dislocation, and the speed is predicted to

increase approximately linearly with |Q3|.
In the experiment the direction of motion and speed of the PHD were measured as a

function of Q1 rather than Q3 as in the theory. Fig. 38 plots the results for the case of

Q2 = Q3 = 0. The PHD is observed to travel approximately parallel to q3, the second roll

pattern with a dislocation, consistent with what would be expected from from an analysis

of the theoretical results. Motion parallel to q3 is pure climb along the q3 rolls which

keeps Q3 = 0. Thus the direction is parallel or antiparallel to q3 depending on whether the

Q1 < 0 or Q1 > 0 (Fig. 39). The data appears to confirm the subtle deviation of ψ from

the direction parallel to q3 for values of Q1 close to zero predicted by Tsimring.

In the experiment the PHD speed also increases approximately linearly with Q1. How-

ever, the speed for Q1 > 0 is less than that for similar magnitudes of Q1 when Q1 < 0. It

is unclear why that is the case.
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(a)

(b)

Q3

Figure 37: Theoretical and numerical predictions of (a) speed and (b) angle of the PHD
motion as a function of the wave number correction Q3 of the component rolls with dis-
location of negative phase-winding number. For the other component roll patterns correc-
tions are Q1 = Q2 = 0. The angles are measured with respect to the wave vector of the
dislocation-free roll pattern. The solid lines are theoretical predictions, and the open and
closed circles are from numerical simulations. (Adapted from Tsimring [15].)
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Figure 38: Measured (a) speed and (b) angle of PHD motion as a function of the wave
number correction Q1 for ε = 0.46. Q2 = Q3 = 0. The angles are measured with respect
to the q2 wave vector. The gaps in the data plots correspond to values of Q1 for which the
PHD-path length was too short to estimate an accurate direction of motion.

4.3.1.3 Varying Q1 while Q3 6= 0 and Q2 = 0

Quantitative predictions of the PHD motion as a function of Q1, when Q3 = 0.1 and

Q2 = 0, are plotted in Fig. 40. In that case the direction of motion depends strongly on

the combination of wave number corrections, and the PHD speed increases with |Q1| in a

weakly nonlinear way.

In the experiment the measured dependence of ψ on Q1, when Q3 = 0.14 and Q2 =

0, is also strong. The direction of motion ψ, changes smoothly (within the error of the

experiment) through the range shown in the shaded region of Fig. 42 in qualitatively the

manner predicted by the theory. In that case there is PHD motion even when Q1 = 0 by

virtue of Q3 6= 0; there is always some climb along q3 as a result. The speed of the PHD is

almost linear for Q1 > 0 but not linear for Q1 < 0. As the speed of the motion for Q1 < 0

near zero is not constant it is difficult to estimate the average speed.
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Figure 39: Path of PHD when Q1 is adjusted and Q2 = Q3 = 0. Motion is such that the
PHD does not climb along the q3 rolls. The dashed arrow is the direction when Q1 > 0
and the dotted arrow is the direction when Q1 < 0.

4.3.1.4 Remarks

The experimental data of Figs. 38 and 41 qualitatively agrees well with the theoretical pre-

dictions of Figs. 37 and 40. Differences such as those observed with the speed measurements

may be attributable to boundary effects – it was observed that when the PHD is near the

boundary its speed changes. Increasing the aspect ratio of the experiment may reduce the

discrepancies. This is most easily achieved by reducing the liquid depth.

A direct quantitative comparison of the measured and computed speeds is misleading

since the “microscopic” details of the BMC experiment differ from the parameters used

in Tsimring’s amplitude equation formulation of the problem. Thus the magnitude of the

measured speeds is not expected to be the same. Nevertheless, our results show that the

predicted and measured directions of motion can be compared meaningfully; the range of

motion is captured very well by the theoretical analysis.

The direction of motion of a PHD was also investigated experimentally by Tam et

al. [38]. In that experiment an isolated PHD is formed in a raft of soap bubbles that

is placed on a glass plate. Unlike in our experiments, it was found that PHD motion is

perpendicular to the wave vector of the dislocation-free roll pattern. However, their system

is an equilibrium system, which is qualitatively different from our “out of equilibrium”

experiment. In addition, the pattern of soap bubbles is formed out of rigid components
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Figure 40: Theoretical and numerical predictions of (a) speed and (b) angle of PHD mo-
tion as a function of the wave number correction Q1 of the component rolls with dislocation
of positive phase-winding number. The other component roll pattern with a dislocation
has Q3 = 0.1, while the dislocation-free roll pattern has Q2 = 0. The angles are measured
with respect to the wave vector of the dislocation-free roll pattern. The solid lines are the-
oretical predictions, and the open and closed circles are obtained by numerical simulations.
(Adapted from Tsimring [15].)

65



0 

0.3

0.6

v

(a)

−0.3 −0.1 0.1 0.3
−1 

0

1

2

Q
1

ψ

(b)

Figure 41: Measured (a) speed and (b) angle of PHD as a function of the wave number
correction Q1 for ε = 0.46 for Q2 = 0 and Q3 = 0.14. The angles are measured with respect
to the q2 wave vector. The gaps in the data plots correspond to values of Q1 for which the
PHD-path length was too short to estimate an accurate direction of motion.

q
2

Figure 42: The shaded region marks the range of angles that the PHD moves along when
Q1 is adjusted, for fixed Q2 = 0 and Q3 = 0.14.
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Figure 43: wave-number selection through formation of a PHD: t = 0. (a) A single PHD
with (a) q1 = 2.37, (c) q3 = 2.5 and (d) q2 = 2.68. q2 is beyond the high-wave-number
boundary (q = 2.52) of the stable band.

that do not alter their wave number.

The dislocation-free roll pattern plays a role in wave-number selection when q2 falls

outside the stable band. In that case a roll splits at the core of the PHD, forming two new

dislocations of opposite phase-winding number in the q2 roll pattern. Each new dislocation

pairs up with the dislocations in q1 and q3 of opposite phase-winding number, thereby

creating two PHDs out of four dislocations (Figs. 43- 45). One PHD has a dislocation in

the q1 and q2 rolls, while the other has a dislocation in the q2 and q3 rolls. The two PHDs

then move in directions that remove a roll from the q2 rolls if q2 is too large, or add a roll

if q2 is too small, thereby adjusting q2 back into the stable band.
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Figure 44: wave-number selection through formation of a PHD: Evolution of q2 roll
pattern. (a) At t = 0 the roll pattern is defect-free. A pinching off of the rolls starts to
occur at the core of the PHD at (b) t ∼ 16τv which (c) grows steadily and (d) by t ∼ 24τv

a roll has split and formed to two dislocations of opposite phase-winding number.
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Figure 45: Wave-number selection through formation of a PHD: t ∼ 50τv; a new pair
of PHDs formed out of the old PHD and the two new dislocations, shown in (d), formed
from a roll of the q2 pattern. The PHDs are moving in a direction (white arrows) that
eliminates a roll from the q2 pattern. The original PHD was a combination of dislocations
I and II, shown in (b) and (c) respectively. The top PHD is a combination of dislocations I
and III, and the bottom PHD is a combination of dislocations II and IV. The dashed and
dot-dashed lines in (a) are the extra rows of cells that correspond to rolls with dislocations.
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4.3.2 Time Dependence of Speed

The theoretical analysis of Tsimring [15] assumes a constant PHD velocity. However, the

experiments demonstrate that this is not always the case. The velocity is observed to change

in magnitude and direction under some initial conditions. We distinguish three topologically

different types of motion.

4.3.2.1 Cell Collapse

For the case when Q1 = Q2 = Q3 > 0 the motion is parallel to q2 and the PHD removes

two rows of hexagonal cells by alternately eliminating a cell from rows perpendicular to

the q1 and q3 directions. The result is a zig-zag trajectory whose overall direction is

parallel to q2 (Fig. 36). The time dependence is due to the collapse of the pentagonal cell

(Fig. 46) followed by a rearrangement of the pattern, and occurs through a series of T1

and T2 elementary processes described by Weaire and Rivier [39]. In a T1 process a cell

edge shrinks to zero and then grows along a different axis in such a way that cells switch

neighbors (Fig. 47(a)). Weaire and Rivier consider a T2 process in which a three-sided

cell vanishes. Thus the collapsing of a five-sided cell is seen as a continuous series of T1

processes that first make it three-sided, followed by a T2 process which makes it disappear.

However, in our experiment the five-sided cell remains five-sided until it vanishes into a

vertex plus an edge. A cell collapse, like the one shown in Fig. 46, is relatively quick and

causes a brief jump in speed, as the speed-evolution plot of Fig. 49 shows. The subsequent

T1 processes that lead to the rearrangement of the cells into the familiar five-sided cell next

to a seven-sided cell result in a much slower PHD speed. The speed jump corresponds to a

displacement of the PHD by approximately π/q parallel to q2.

4.3.2.2 Cell Mitosis

The motion anti-parallel to q2 has a smoother trajectory and the speed has less of a time

dependence. It is a result of cell creation through division (mitosis), also an elementary

process [39], of the heptagonal cell (Fig. 48). This is a topologically different process than

that observed in the motion parallel to q2, and is regarded as a combination of T1 and
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Figure 46: PHD motion via cell collapse. (a) PHD at the center of the pattern. The
dashed line marks an extra row of cells of the q1 component rolls. The dot-dashed line
marks an extra row of cells associated with the q3 rolls. The extra rolls terminate at the
PHD core. (b)-(d) The pentagonal cell in the process of collapsing. (e) The pentagon
has collapsed into a vertex and an edge and in the process converted the heptagon into a
hexagon, and changed a hexagon into a pentagon. (f) A partial T1 process creates an edge
which converts a hexagon into a heptagon. Thus the penta-hepta pair has been recreated
at new location. The process has reduced the length of the extra roll of q1, thereby moving
the PHD core upward by one cell length.
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Figure 47: Two elementary processes by which hexagonal patterns rearrange themselves.
(a) T1 process – edge between cells 2 and 4 shrinks to zero and is replaced by another
resulting in cells 1 and 3 becoming neighbors and 2 and 4 separating. (b) T2 process – a
three-sided cell vanishes. (Adapted from Weaire [39].)

inverse T2 processes [39]. Heptagon mitosis results in the displacement of the PHD by

approximately π/q antiparallel to q2.

4.3.2.3 Neighbor-Switching

A third type of motion is observed when the PHD moves primarily by gliding along one roll

pattern with a dislocation. For the narrow range of motion for which Q1 > 0 and Q3 ≈ 0

(results are similar for Q3 > 0 and Q1 ≈ 0) the PHD moves purely through “neighbor

switching”, i.e., using T1 processes (Fig. 50). The trajectory is smooth and appears to

be the least time dependent. However, for Q1 < 0 and Q3 ≈ 0 the motion is different.

The PHD moves in the opposite direction through a combination of a series of “neighbor

switches” similar to the Q1 > 0 case, followed by instances of cell mitosis.

4.3.2.4 Remarks

The three elementary processes proposed by theorists as means by which a hexagonal pat-

tern might arrange itself are not restricted to any particular system. Thus in principle

PHDs in other stationary periodic nonequilibrium patterns with hexagonal symmetry, such

as the chemical patterns observed in Ref. [2] are likely to propagate in the same manner.
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Figure 48: PHD motion via cell mitosis. (a) PHD at the center of the pattern. The dashed
line marks an extra row of cells of the q1 component rolls. The dot-dashed line marks an
extra row of cells associated with the q3 rolls. The extra rolls terminate at the PHD core.
(b) The boundary separating the heptagonal and pentagonal cells deforms slightly. (c)-
(e) The heptagonal cell splits into two pentagons through mitosis as the downward flowing
liquid through its center becomes stronger. (f) After the split a partial T1 process creates an
edge which converts one of the pentagons into a hexagon, while at the same time changing
a hexagon into a heptagon. Thus the pentagon-heptagon pair has been recreated. The
row corresponding to the dislocation in the q1 rolls has shifted to the left and lengthened
slightly in the rearrangement process while the row with a dislocation in q3 has increased
in length by one cell. Thus the core of the PHD has moved by one cell length.
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Figure 49: Measured time series of PHD speeds for q1 = q2 = q3 at ε = 0.28, corresponding
to (a) pentagonal cell collapse with q = 2.23 and (b) heptagon mitosis with q = 1.95. The
solid line indicates the magnitude of velocity perpendicular to q2 while the dashed line shows
the magnitude of velocity perpendicular to q3. Pentagonal cell collapse is characterized by
jumps in PHD motion that occur alternately between directions perpendicular to q2 and
perpendicular to q3; this alternating character is shown in (a). By contrast, PHD motion
during heptagon mitosis is smoother, as shown in (b).
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Figure 50: PHD motion via “neighbor switching”. The dashed line marks an extra row of
cells of the q1 component rolls. The dot-dashed line marks an extra row of cells associated
with the q3 rolls.The edge indicated by the box (a) shrinks to a point (b) and is replaced
by another edge along a different axis (c). In the process of rearrangement the PHD moves
by π/q.
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4.3.3 Discussion

A pattern typically breaks down through the formation of multiple PHDs. Thus future work

on PHDs could explore how two or more affect each other. There are six distinct PHDs

corresponding to different combinations of dislocations of opposite phase-winding number

in any two roll systems. Thus the studies could examine how the different distinct PHDs

interact with one another. Tsimring finds through numerical investigations that two PHDs

in a pattern with all Qj = 0 move and either attract or repel each other depending on the

configuration of their phase-winding numbers. The movement is caused by distortion of the

phase field of one PHD by the other, leading to nonzero Qj at the location of the PHD.

His studies predict that PHDs of the same type will repel. Two PHDs with opposite phase-

winding number in the same roll system will attract each other and collide leading to the

annihilation of one PHD and the formation of a single PHD of different configuration than

the original two. The process is similar to the reverse of the example shown in Figs. (43)-(45)

Tsimring’s studies assumed a PHD in a a pattern of infinite lateral extent. While his

predictions of the direction of motion are qualitatively confirmed by our measurements, our

investigations found that the speed and direction of motion differ significantly from theory.

Our results show a strange asymmetry in the speed of the PHD when its direction is reversed.

It is unclear whether this is due in some part to boundary effects, as we have observed that

as the PHD approaches the boundary, its speed reduces dramatically. Asymmetry also

occurs in the case where in one direction the motion is due purely to neighbor-switching,

while in the opposite direction the motion is observed to be a mix of neighbor-switching

and mitosis. Further investigation is needed to determine whether these are limitations of

our experimental setup, or whether they are intrinsic to hexagonal patterns but are missed

by the theory.

A possible area of future study could be the control of PHD motion. In the experiments

described above, the protocol is to imprint the patterns at time t = 0, and to then turn off

the forcing for the duration of the experiment to allow the pattern to evolve undisturbed.

The result is PHD motion in a straight line. However, if the conditions can be changed

while the defect is in motion then the path of the PHD can be altered. It is possible to
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make small alterations to the wave number of each roll by shifting the pinned boundaries

in or out. However, the time frame over which the pattern changes wave number is slow

(∼10τv) thus steering of the PHD is gradual.
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CHAPTER V

DISCUSSION

In this thesis we have investigated fundamental aspects of the behavior of hexagonal patterns

formed under nonequilibrium external conditions. They fall under the general category

of patterns that are spatially periodic and stationary in time. Our focus has been on

the symmetry of the pattern itself rather than on the details of the particular system (in

this case a Bénard-Marangoni convection experiment) that produces the pattern. To that

end, we have compared our experimental results with predictions from amplitude equation

studies, which are analyses that reduce the problem to its essential symmetries. Thus, it

is expected that our results would apply qualitatively to other driven stationary periodic

hexagonal patterns.

The studies are analogous to earlier investigations by Busse et al. on patterns of straight

rolls. Hexagons are more complex structures that can be represented as a superposition

of three roll systems oriented 120◦ with respect to one another. Our work is the first

quantitative experimental investigation of complex patterns in several areas of interest: the

extent of the region of stability of the pattern; the nature of the secondary instabilities,

which are the mechanisms by which patterns with wave number outside the allowed region

of stability become unstable; and the behavior of defects, which typically form through

secondary instability.

We showed, contrary to an earlier experimental study, that indeed there is a substantial

stable band for hexagons. The band was approximately the same size as that of Bestehorn’s

theoretical estimate that reduced the “microscopic” equations of a Bénard-Marangoni con-

vection experiment to a set of amplitude equations. Predictions using generic amplitude

equations show a larger region of stability for small ε than is observed in our experiment.

However, that is expected since the theoretical studies assume a hexagonal pattern of infinite

lateral spatial extent.
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The work on secondary instability was heretofore not studied experimentally. We were

able to apply perturbations suggested by amplitude equation analyses and show that they

are possible mechanisms of instability at the boundaries of the stable region. This particular

set of experiments would benefit from further theoretical collaboration to sort out some

ambiguity about the mechanism of instability at the high-wave-number side of the stable

band. Current theoretical studies suggest that the stable band is limited only by phase

instabilities. However, no experimental investigations have been performed to rule out the

possibility of amplitude instabilities being responsible.

The theoretical study of penta-hepta defects (PHDs) by Tsimring extended an earlier

study on the motion of single dislocations in roll patterns. PHDs are the hexagonal pattern

analog to dislocations in roll patterns, and are not as well understood. Currently our inves-

tigations provide the only test of Tsimring’s studies. The direction of motion predictions

agree well with experimental measurements, while for speed measurements the theory and

experiment are not in as good agreement.

By and large, our experimental results show that theoretical studies that focus on pat-

tern symmetries can produce qualitatively good predictions. It is likely that some of the

differences observed in experiment are due to boundary effects or inherent system biases in

the experimental setup. Typically the effects of such problems can be investigated system-

atically and reduced. For example, increasing the aspect ratio effectively makes the system

larger, i.e., moves the lateral boundary farther away. The experiments can then be repeated

and compared for measurable differences.

There are a range of possible areas of future work. In addition to investigating the

role of amplitude instabilities in limiting the stable band, it would be useful to probe the

ε-dependence of the instability mechanisms. Also, an investigation could be carried out

to determine whether there is modulation-wavelength dependence of the transverse and

longitudinal instability mechanisms. In our investigations it was assumed that there is no

wavelength dependence for the phase instabilities when their wavelengths are very large.

When PHDs form spontaneously in the bulk of the pattern they do so in pairs. Some

numerical studies by Tsimring have yielded predictions about their interactions that can
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readily be tested using our current experimental setup. Another area of interest would be

an investigation of the effect of lateral boundaries on the motion of PHDs. Our experiments

clearly show that the boundary affects their speed and trajectory.
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APPENDIX A

PID CONTROL

Proportional-integral-derivative (PID) control is a technique that is used to maintain a

process variable (PV (t)), such as temperature, at a desired value, referred to as the setpoint

(SP (t)) [41]. It tracks the error ε(t) between PV (t) and SP (t) and minimizes it based on

the the value of the error, its integral over a recent time interval and its current derivative.

The three quantities are weighted according to their relative importance, and a controller

output CO(t) to be fed to the driving unit, e.g. an air conditioner, is generated from

CO(t) = P · ε(t) + I ·
∫ t

0
ε(τ)dτ + D · d

dt
ε(t) (24)

where

ε(t) = SP (t)− PV (t). (25)

Thus if the current error is large, or has been large for a long time or is changing rapidly,

the controller output will be large. And if it has remained at the setpoint for a long time

the controller output will be very small.

The challenge is in tuning the controller, i.e., choosing the weights appropriately. If

The weights are made very large, the controller will aggressively attempt to correct all

errors, including small discrepancies. The result would be to drive PV (t) past SP (t) as

the controller attempts to correct recent errors, making the control ineffective. Conversely,

setting the weights too small would leave the controller unable to correct one error before

another error appears. Thus a well tuned controller is set somewhere between the two

extreme cases.

In 1942 Ziegler and Nichols [42] empirically created tuning rules that yield “acceptable”
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Figure 51: Ziegler-Nichols reaction curve.

controller performance. They proposed the following weights for Eq. (24):

P =
1.2 · T
K · d , (26)

I =
0.6 · T
K · d2

, (27)

D =
0.6 · T

K
, (28)

where K, T and d are determined experimentally. If the controller outputs a unit step and

the response, PV (t), is plotted against time, then K is the net change in PV (t); T is the

process time constant defined as the inverse of the slope of the response curve at its steepest

point; and d is the dead time, i.e., the delay between the input time and the response time

defined in Fig 51.
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APPENDIX B

LINEAR REGRESSION ANALYSIS

Linear regresssion analysis determines the “best fit” straight line for two variables that have

a linear relationship. Thus, if data labeled as variable y depends linearly on variable x data,

linear regression finds constants a and b such that line y = a + bx minimizes the the least

squares error between the data and the straight line. Constant a is the intercept of the line

with the y-axis and b is the slope.

The following summary is covered in more detail in Ref. [24]. It is also discussed in most

introductory statistics texts.

B.1 Determination of the Slope and the Intercept

It can be shown that for n data points (xi, yi) the slope b of the best fit line is given by

b =
SSxy

SSxx
, (29)

where

SSxy =
n∑

i=1

(xi − x)(yi − y) (30)

and

SSxx =
n∑

i=1

(xi − x)2. (31)

The constants x and y are the average values of the variables and are given by

x =
1
n

n∑

i=1

xi

and

y =
1
n

n∑

i=1

yi.

The intercept a of the least squares line is given by

a = y − bx. (32)
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B.2 Determination of the Error in the Slope

The standard error of the slope is given by

seb =
ser√
SSxx

, (33)

where sum SSxx is defined in Eq. (31), and ser is the the standard error of the regression,

given by

ser =

√
SSyy − bSSxy

n− 2
. (34)

The sum SSxy is defined in Eq. (30) and

SSyy =
n∑

i=1

(yi − y)2. (35)

Assuming the error distribution is approximately normal, the 95% confidence interval for

slope b is given by

b± seb × tn−2,0.05 (36)

where tn−2,0.05 is the 95th percentile on a t-distribution with n− 2 degrees of freedom.
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APPENDIX C

EVOLUTION OF HEXAGONAL PATTERNS FROM

CONTROLLED INITIAL CONDITIONS IN A

BÉNARD-MARANGONI CONVECTION EXPERIMENT

The material for this appendix is found in the published Letter of Ref. [52]. It reports the

first experimental measurement of the stable band for nonequilibrium hexagonal patterns,

and the observed time dependence in the motion of a penta-hepta defect.
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APPENDIX D

PREPRINT: SUBMITTED TO PHYSICAL REVIEW

LETTERS SEPTEMBER 2003

This appendix is a preprint submitted to Physical Review Letters in September 2003. It

reports the first experimental studies of secondary phase instabilities in hexagonal patterns.

D.1 Secondary Instabilities of Hexagonal Patterns in a Bénard-
Marangoni Convection Experiment

Denis Semwogerere and Michael F. Schatz

Center for Nonlinear Science and School of Physics, Georgia Institute of Technology,

Atlanta, Georgia 30332-0430

We have identified experimentally secondary instability mechanisms that restrict the

stable band of wave numbers for ideal hexagons in Bénard-Marangoni convection. We use

“thermal laser writing” to impose long wave perturbations of ideal hexagonal patterns as

initial conditions and measure the growth rates of the perturbations. For ε = 0.46 our

results suggest a longitudinal phase instability limits stable hexagons at high wave number

while a transverse phase instability limits low wave number hexagons.

PACS numbers: 47.54.+r, 47.20.-k, 61.72.Ji

For stable, spatially-periodic patterns observed in many nonequilibrium systems [4, 46,

47, 48], the pattern typically exhibits a wave number q that is drawn from range of pos-

sible values, even when a given system’s external parameters are fixed. The maximum

and minimum values of q are typically limited by secondary instability that leads to more

complex states. For stationary striped patterns (rolls), the study of secondary instability
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in Rayleigh-Bénard convection led to the identification of several instability mechanisms,

as cataloged by the “Busse balloon” [8]. These mechanisms have a universal character

and have been associated with roll instability in several other physical systems [49, 9, 11].

Periodic patterns of hexagons also arise in diverse physical settings, including fluid flow

[16, 26] chemical reactions [2], nonlinear optics [50], crystal growth [51] and granular flow

[3]. However, the instability mechanisms that constrain stable wave numbers for hexagons

have not, heretofore, been observed in experiments.

In this Letter we describe phase instabilities that limit the stable wave number of hexag-

onal patterns in Bénard-Marangoni convection experiments. These instabilities initially

appear as modulations with small wave number k of the hexagons. Theoretical studies of

amplitude equations show that as k → 0 two different instabilities can restrict the stable

band [14, 13] – a longitudinal modulation with a curl-free phase vector Φ and a transverse

modulation with a divergence-free Φ. Our experiments demonstrate that these instabilities

are observable even with finite k where significant mixing of the longitudinal and transverse

modes might occur [14].

In Bénard-Marangoni convection hexagonal convection patterns arise when a fluid with

a free upper surface is heated uniformly from below and cooled from above with a sufficiently

large temperature gradient. The convective flow is driven primarily by temperature-induced

surface tension gradients (thermocapillarity) at the liquid-gas interface and is characterized

by the Marangoni number M = σT ∆Td
ρνκ , where σ is the liquid’s surface tension, ∆T the

temperature difference across the liquid layer, σT ≡ dσ
dT , and d, ρ, ν, κ are respectively,

the liquid’s thickness, density, kinematic viscosity, and thermal conductivity. With σT < 0,

surface tension gradients draw fluid from warm areas at the liquid-gas interface to cool

areas. This creates upflows at the locally warm spots and downflows at the cool areas

(Fig. 52(a)).

The experiments are performed on a flat layer of silicone oil of depth d = 0.094± 0.003

cm confined by a Teflon sidewall ring of inner diameter 7.62± 0.003 cm yielding an aspect

ratio of 40.5 for the convecting region. Uniform heating is applied from below and an

air gap of thickness 0.074 ± 003 cm is cooled from above to set the control parameter
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Figure 52: A shadowgraph image (a) of hexagons with a longitudinal phase perturbation is
shown with the pattern’s three roll components (b-d) extracted by complex demodulation.
For the purposes of illustration, the perturbation, imposed as an initial condition, is shown
with an amplitude that is larger than typical modulations by a factor of 8. In (a), the
white edges and dark centers of the hexagons indicate, respectively, regions of downflow
and upflow. (b) The main modulation is to the q1 rolls – note their compression and
dilation. Shading has been added to emphasize the long wave nature of the modulation –
the overall lighter areas have higher wave number than the darker regions. (c) q2 rolls are
sheared slightly by the modulation.(d) The q3 rolls are modulated with the same amplitude
and phase as the q2 rolls.
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at ε = M−Mc
Mc

= 0.46, where Mc is the value of the Marangoni number at the onset of

convection. The liquid kinematic viscosity ν is 8.25±0.03 cS and the Prandtl number Pr is

87.2± 0.3. All measurements are nondimensionalized by the length scale d and the vertical

diffusion time τv = d2/κ = 8.8 s. Visualization is achieved using the shadowgraph technique

[10]. Images of the patterns are digitized and then analyzed using a variety of Fourier and

complex demodulation techniques to extract the spatial dependence of the pattern wave

number, amplitude and phase [38, 23, 34]. A hexagonal pattern can decomposed into three

component roll patterns oriented 120◦ with respect to one another. The components are

labeled as in Fig. 52 by wave vectors q1, q2 and q3.

The initial conditions of the experiment are imposed by thermo-optically altering the

thermocapillary driving [52]. Beginning at fixed ε above onset the natural pattern selected

by the system is replaced with the desired pattern by heating multiple spatial points along

the liquid-gas interface with a scanned infrared CO2 laser beam. The imposed hot spots

become the new regions of liquid upflow thereby establishing the pattern (Fig. 52(a)). The

process typically takes less than 10 τv, whereupon lasing is turned off. The strong thermal

gradients due to the lasing dissipate within ∼ τv and thereafter the resulting pattern sets

the initial condition from which the subsequent pattern evolution is studied. Lasing is

maintained along the outer 25% of the pattern to pin cells in a hexagonal boundary so as

to prevent pattern distortion due to creation or destruction of cells at the sidewall.

Imposing ideal hexagons (i.e. patterns with q = |q1| = |q2| = |q3|) permits measure-

ment of the stable band but is insufficient to determine the mechanisms of the secondary

instabilities. The band is determined by imposing ideal patterns at fixed ε, and tracking

q over time to check for stability [52]. The imposed pattern remains stationary for q in a

stable range; however, if q is too large or too small, the imposed pattern becomes unstable.

The boundaries of the stable band are taken to be the largest and smallest q that do not

change. For unstable values of q the pattern forms penta-hepta defects at the boundaries

or within the interior. The defects propagate in such a way as to either add or eliminate

cells so that the average q is driven into the stable band [52]. Observation of these instabil-

ity driven dynamics does not reveal the nature of the mechanisms that cause them, unlike
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the case of periodic rolls where phase instabilities such as the zig-zag instability are easily

distinguished by eye [8].

The mechanisms of secondary phase instability can be probed by applying phase per-

turbations to hexagonal patterns. The perturbations are characterized by a wave vector k

and angle θ measured with respect to one of the roll wave vectors (here chosen to be q1

for convenience). In the long wavelength limit (k → 0) the phase vector of the perturba-

tion can be written as Φ ≡ −(φ2 + φ3)̂ı + (φ2 − φ3)/
√

3̂ [14, 13], where φ1, φ2 and φ3

are terms added to the phases of the q1, q2 and q3 rolls respectively. In that case there

are two classes of phase perturbation: a longitudinal perturbation for which Φ ‖ k and a

transverse perturbation for which Φ ⊥ k. For θ = 0 the longitudinal perturbation is taken

as φ1 = iαcoskx, φ2 = −i1
2αcoskx and φ3 = −i1

2αcoskx (Fig. 52), where α is proportional

to the perturbation amplitude and the x axis is parallel to q1. The result is a sinusoidal

modulation of the wave number of the q1 rolls in a direction parallel to k with amplitude kα

(Fig. 54(a)). The perturbations to the q2 and q3 rolls have similar modulations parallel to k

but with amplitude 1
2kα. For the transverse perturbation (Fig. 53) φ1 = 0, φ2 = i

√
3

2 αcoskx

and φ3 = −iα
√

3
2 coskx. In that case the q1 rolls are unperturbed while the q2 and q3 rolls

are perturbed sinusoidally along the x axis with amplitude
√

3
2 kα.

Perturbations applied at fixed ε decay exponentially when q is within the stable band

and do so with a growth rate that depends on q. The growth rate is measured by first

applying the perturbation as an initial condition and then tracking the evolution of its

amplitude. The logarithm of the amplitude plotted against time fits reasonably well to a

straight line (Fig. 54(b)) indicating that the perturbations decay exponentially as expected

for disturbances that are sufficiently small. The slope obtained from a linear least squares

fit yields the perturbation’s growth rate.

Secondary instabilities are identified by observing the behavior of their growth rates

at the boundaries of the stable band. The growth rate of the transverse perturbation is

found to remain relatively constant for 2.2 . q . 2.55 but starts to gradually decrease in

magnitude for q . 2.2 until it crosses zero at the low wave number boundary (Fig. 55(a)).

This suggests that the divergence-free transverse perturbation becomes unstable at the low
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Figure 53: A shadowgraph image (a) of hexagons with a transverse phase perturbation is
shown with the pattern’s three roll components (b-d) extracted by complex demodulation.
For the purposes of illustration, the perturbation is shown with an amplitude that is larger
than typical modulations by a factor of 9. (b) The q1 component is unaffected by the
transverse modulation. (c) The roll component labeled by wave vector q2 that shows the
shearing of the rolls in a direction transverse to the q1 rolls. (d) The q3 component is
modulated with the same amplitude but opposite phase as the q2 component.
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Figure 54: Spatial and temporal evolution of the longitudinal phase perturbation. (a)
The profile of the local wave number of the q1 rolls (scaled by the mean value q = 2.08) is
plotted at times t = 0 (symbol −), t = 13 (−−) and t = 27 (·−); thus the phase modulation
adjusts the overall wave number by a maximum of less than 1.5%. The long wave nature
of the perturbation is apparent – the modulation wave number k = 0.14 is approximately
1/15th of the mean q. (b) The amplitude (kα) is plotted as a function of time on a semi-log
scale; the slope of this curve yields the growth rate, which is negative for perturbations
within the stable band.
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Figure 55: Plots of growth rate vs. wave number for the transverse perturbation (a)
and the longitudinal perturbation (b). The dashed lines represent experimentally measured
boundaries of the stable band measured previously for ε = 0.46. (a) The growth rate for
the transverse perturbation appears to go to zero at the low wave number boundary. (b)
The growth rate of the longitudinal perturbation appears to sharply decrease and trend to
zero at the high wave number boundary. The data are shown for θ = 0 (×,◦), θ = π/18
(¤), θ = π/12 (♦), θ = π/6 (B), θ = π/3 (M), and θ = 2π/3 (O).

wave number side of the stable band and is thus responsible for the instability at that

boundary. At the high wave number boundary the magnitude of the growth rate does not

reduce, i.e., the transverse modulation does not appear to restrict the band at high wave

number. For the longitudinal phase perturbation the measured growth rate is finite at the

low wave number boundary and remains constant for 2.05 . q . 2.4. As q approaches the

high wave number boundary the change in growth rate is not slow as in the transverse case,

but becomes increasingly sharp the closer q gets to the boundary, and appears to trend to

zero growth rate at the boundary (Fig. 55(b)), i.e., the longitudinal perturbation may be

the secondary instability that restricts the stable band at high wave number.

Amplitude equation analyses [14, 15] suggest that phase perturbations with finite k

are neither purely transverse nor purely longitudinal, i.e., for longitudinal perturbations
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Φ is not parallel to k and for transverse perturbations Φ is not perpendicular to k. This

“mixing” of phase perturbations is a function of θ and is in general non-zero except for

θ = nπ/6, where n is an integer. A consequence of this is that the growth rates of phase

perturbations are also functions of θ. In the experiments, with k = 0.14 and at two different

values of q in the stable band, growth rates were measured for θ = nπ/6, for n = 1, 2 and 4.

The results were not significantly different (Fig. 55) indicating no mixing, consistent with

theory [14]. For θ = π/12 and π/18 where mixing is expected to be strong, the growth rates

were also not significantly different, suggesting that k is small enough that phase mixing is

weak.

Mechanisms other than phase instabilities might also play a role in limiting the stable

wave number band. The growth rate data conclusively show that the transverse pertur-

bation becomes unstable at the low q boundary. The data are less convincing at the high

q boundary where the growth rates of the longitudinal perturbation are trending toward

zero so rapidly the resolution of our current experiments is insufficient to resolve very small

growth rates near the boundary. In principle, amplitude instabilities could limit the stable

band at high q; however, theoretical work on Bénard-Marangoni convection [26] suggest that

when buoyancy effects are weak, amplitude instabilities play no role in secondary instability

of hexagons.

Some insight into the ε dependence of secondary instability mechanisms can be gained

by comparing these results with previous measurements of the stable wave number band

[52]. The measured low q boundary does not change significantly for 0 < ε < 1 suggesting

that the transverse phase instability is the mechanism that limits the stable band for that

range. Similarly, the high q boundary remains unchanged for 0.4 . ε < 1, suggesting the

longitudinal phase instability governs the high q limit. However, for ε . 0.4 the high q limit

depends strongly on ε. Thus, by analogy with the Busse balloon for straight rolls, where a

change in the nature of the ε dependence of the stability boundaries can indicate transitions

between different mechanisms, it is possible that the dominant instability mechanism may

change (say from a longitudinal to a transverse phase instability) as ε is decreased below

0.4. Future experimental work complemented by theoretical and numerical studies at the
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same parameter values would be useful to map the dependence of secondary instability

mechanisms on ε and elucidate the relative importance of phase and amplitude instabilities.
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