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Data assimilation refers to the process of estimating a system’s state from a time series of mea-

surements swhich may be noisy or incompleted in conjunction with a model for the system’s time

evolution. Here we demonstrate the applicability of a recently developed data assimilation method,

the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally cha-

otic flows in Rayleigh–Bénard convection experiments. Using this technique we are able to extract

the full temperature and velocity fields from a time series of shadowgraph measurements. In

addition, we describe extensions of the algorithm for estimating model parameters. Our results

suggest the potential usefulness of our data assimilation technique to a broad class of experimental

situations exhibiting spatiotemporal chaos. © 2009 American Institute of Physics.
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It is often desirable to predict the future state of a chaotic

system, i.e., to forecast the system. Before one can hope to

estimate the future state, one must know the current

state. For many systems this is not always possible, either

because measurements are too noisy, or because not all

system variables can be measured. This is especially true

in spatiotemporally chaotic systems (chaotic systems

which are spatially extended) in which it may not be pos-

sible to achieve a measurement density high enough to

reconstruct the state with sufficient accuracy. For ex-

ample, in weather forecasting, measurements occur at

weather stations which, in remote locations, are sparsely

distributed. Traditional algorithms such as the extended

Kalman filter “assimilate” current and previous measure-

ments, using a model for the system dynamics, to esti-

mate the current system state. However, these traditional

algorithms do not scale well to high-dimensional systems

with many degrees of freedom, a hallmark of spatiotem-

poral chaos. Recent developments in the field of numeri-

cal weather prediction have demonstrated algorithms ca-

pable of handling high-dimensional systems. Although

originally developed for weather prediction, these algo-

rithms can be applied to any spatiotemporally chaotic

system. Here we present the first successful application of

a recently developed data assimilation algorithm to a spa-

tiotemporally chaotic laboratory experiment. We have

chosen a commonly studied Rayleigh–Bénard convection

laboratory experiment exhibiting a form of spatiotempo-

ral chaos known as spiral defect chaos.

I. INTRODUCTION

Numerous systems exhibit spatiotemporal chaos. Ex-

amples of this complex behavior with many dynamical de-

grees of freedom occur in optics,
1
chemical and biological

media,
2
and hydrodynamics,

3,4
including geophysical flows

in the ocean and atmosphere. Estimation of the state of an

evolving dynamical system from measurements is often a

prerequisite for prediction and control. However, obtaining

the system state is a common experimental difficulty for

many systems exhibiting spatiotemporal chaos, where avail-

able measurements may be incomplete and noisy. When an

approximate model for the system is available, it can be used

in conjunction with incoming measurements to estimate the

evolving system state, a process referred to as “data assimi-

lation.”

The Kalman filter
5,6

optimally solves the data assimila-

tion problem for systems with linear dynamics sand Gaussian

measurement noised. Several methods extending the Kalman

filter methodology to nonlinear systems have been proposed,

including the extended Kalman filter sEKFd,7 and the class of

ensemble Kalman filters sEnKFd.8 Straightforward applica-

tion of these methods to large spatiotemporally chaotic sys-

tems is often completely infeasible. In particular, the EKF

requires inversion of N3N matrices, where N is the number

of model variables.
9
For spatiotemporally chaotic systems, N

can be very large se.g., in the millionsd making such matrix

inversions impossible in practice. Despite these difficulties,

recent developments
10–12

from the field of numerical weather

prediction
13–18

suggest the possibility of achieving good ac-

curacy sas in a Kalman filterd, but in a way that is computa-

tionally feasible for large spatiotemporally chaotic systems.

In this paper we test the efficacy of a new method, the

local ensemble transform Kalman filter sLETKFd.12 Al-

though originally motivated by application to weather pre-

diction, the LETKF is potentially broadly applicable to any

large spatiotemporally chaotic system. It is motivated by two

observations: sid When the state is examined in a local region

that is small compared to the system size, it has been shown

that it can be accurately described by a relatively few degrees

of freedom;
19

and siid many spatiotemporally chaotic systems

exhibit finite space/time correlation scales. Thus, by siid we
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expect that the system state at the space/time coordinate

sx , td is significantly correlated only in locations x8 at a pre-

vious time t−Dt that lie within some region, say ux−x8u
& lDt swhere lDt might be expected to increase with Dtd. With

these points in mind, the LETKF uses a process that we refer

to as localization. By this we mean that we employ many

independent data assimilations in a set of overlapping local

regions. We choose the size of these regions empirically,

increasing them until our results are no longer further im-

proved. sThis procedure may be thought of as an operational
means of estimating the effective average value of lDt.d Be-
cause these regions are relatively small, individual computa-

tions associated with them are not prohibitive. Furthermore,

by use of a simple example
10,11

it was indicated that, by

exploiting localization in this way, state estimates with accu-

racies virtually the same as those for a classical Kalman filter

technique sthus presumably of near optimal accuracyd can be
achieved shere we use the specific implementation described
in Ref. 12d.

The purpose of this paper is to test the localization meth-

odology on a system which represents a realizable laboratory

experiment. Assimilation schemes have been used on labora-

tory experiments before,
20

but never using a localization

technique. We have chosen to investigate a common labora-

tory experiment that exhibits an especially high dimension-

ality, Rayleigh–Bénard convection. Flows such as spiral de-

fect chaos
3,21

in the Rayleigh–Bénard problem are, perhaps,

the best studied experimental examples of spatiotemporal

chaos; nevertheless, many general aspects of spatiotemporal

chaos remain poorly understood.

What follows is an introduction to Rayleigh–Bénard

convection sSec. IId and data assimilation sSec. IIId, followed
by tests of the accuracy of the LETKF sSecs. IV and Vd. We

also investigate performance with extremely sparse/noisy

measurements and test extensions of the LETKF for estimat-

ing model parameters. Details of the LETKF algorithm are

described in the Appendix.

II. RAYLEIGH–BÉNARD CONVECTION

In Rayleigh–Bénard convection, a horizontal fluid layer

of thickness d is confined between a heated lower plate and a

cooled upper plate. For a temperature difference DT between

the plates that is sufficiently small, the fluid is at rest and

heat is transported by conduction sresulting in a temperature
T which varies linearly with vertical distanced. As DT is

raised above a critical value DTc there is an onset of fluid

motion when buoyancy overcomes viscous dissipation and

thermal diffusion.

Rayleigh–Bénard convection is typically modeled using

the Boussinesq equations,
22
which are commonly nondimen-

sionalized with temperature scaled by DT, length scaled by

d, and time scaled by the vertical diffusion time t
v
=d2 /k,

where k is the thermal diffusivity. This system of units is

used throughout the paper. The temperature deviation from

the conducting static solution is denoted as u. We solve the

Boussinesq equations in the disk shaped region x2+y2øG2,

uz u ø
1

2
, with Dirichlet boundary conditions u=0, u=0 on all

walls. G is called the aspect ratio and denotes the radius of

the disk in units of d. In terms the fluid’s velocity u, tem-

perature deviation u, and pressure p, the Boussinesq equa-

tions take the form

S ]

]t
+ u · ¹Du = − ¹p + Pr ¹2u + Pr Ruẑ ,

S ]

]t
+ u · ¹Du = ¹2u + u · ẑ , s1d

¹ · u = 0.

These equations have two dimensionless parameters, the

Rayleigh number R and the Prandtl number Pr,

R =
gad3DT

nk
, Pr =

n

k
. s2d

Here a is the thermal expansion coefficient, n is the kine-

matic viscosity, and g is gravitational acceleration. The criti-

cal Rayleigh number for convective onset is Rc<1707. The

reduced Rayleigh number

e =
R − Rc

Rc

=
DT − DTc

DTc

s3d

measures the amount above onset. Fluid convection arises

when e.0. It is important to note that the Boussinesq equa-

tions are an approximation to the full Navier–Stokes equa-

tions. This approximation assumes small deviations of the

density from its average value and neglects any temperature

dependence of the transport coefficients. While the Bouss-

inesq approximation is fairly good for the situation we will

apply it to, it can be expected that it does lead to some model

error.

We have investigated the parameter region near e=1,
Pr=1. At these values of e and Pr, the spatiotemporally cha-

otic state known as spiral defect chaos can arise;
3,21

however,

in our studies using G<20, the region is too small to support

the large spirals typically seen in spiral defect chaos. Never-

theless, the convective flows in our studies exhibit complex

behavior in both space and time ssee Fig. 6 below, for an

example of the spatial structure of the evolving stated.
In experiments, Rayleigh–Bénard flows are visualized

using the shadowgraph method,
23
an indirect measurement of

the fluid’s spatial temperature variation. Time series of two-

dimensional shadowgraph images are typically collected

with sampling periods ,1t
v
and with high spatial resolution

s,105–106 pixels per imaged. Due to its difficulty, measure-
ment of the fluid velocity is not performed in typical experi-

ments. We note, however, that the so-called mean flow has

been shown, through the use of simulations, to play a signifi-

cant role in the dynamics.
24
Here we define the mean flow as

ūsx ,yd;eu'sx ,y ,zddz, where u=u'+uzẑ. Because of its

physical importance, it would be desirable to be able to es-

timate the mean flow field ū.

We connect the shadowgraph light intensity Isx ,yd to the
temperature field using the following relation:
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Isx,yd =
I+sx,yd

1 − a¹
'

2 ūsx,yd
. s4d

Equation s4d is derived from geometric optics
23,25

under the

approximation that ua¹
'

2 ūu!1. In Eq. s4d, ¹
'

2 ;]2 /]x2

+]2 /]y2 is the horizontal Laplacian, and the temperature

field is vertically averaged: ūsx ,yd;eusx ,y ,zddz. I+sx ,yd is
the incident light intensity and a=2z1udn /dTu, where n is the

index of refraction of the fluid, z1 is the optical path length

from the midplane of the fluid layer to the image plane sin
units of dd, and the temperature coefficient of the index of

refraction udn /dTu is evaluated at the average temperature of
the fluid layer. We have checked the validity of the geometric

optics approximation by computing Isx ,yd for the simple

state of straight convection rolls using both geometric optics

and physical optics
26
for our setup under the conditions of

our experiment. Under these conditions, we find the geomet-

ric optics approximation yields results that are in good agree-

ment with the more exact results from physical optics.

III. DATA ASSIMILATION

A. Outline of method

Our goal is to determine the full fluid state, given by the

temperature and velocity fields fusx ,y ,zd and usx ,y ,zdg from
a time series of shadowgraph measurements, and we view

this as a test case investigation of the general usefulness of

the LETKF technique for laboratory experiments on spa-

tiotemporal chaos. Moreover, we place particular emphasis

on the ability of the state estimate to produce accurate fore-

casts.

We begin by considering a system state vector j with N

components, for which we have a dynamical model, j j+1

=Gsj jd. Here, G is an integration of the Boussinesq equa-

tions s1d from a time t j to t j+1= t j+Dt, where the t j are the

times at which we wish to construct an estimate of the sys-

tem state salso the times at which measurements are assumed
to be maded. Our Boussinesq integration is performed using
the pseudospectral method described in Ref. 27 and the state

j consists of the variables u and u defined on the grid points

srm ,fn ,zld of a cylindrical mesh;
28
symbolically,

j = Fu

u
G .

Most data assimilation algorithms are iterative, cycling

between a predict and update step once every time interval

Dt. In the update step, current measurements are used to

update sor correctd the prediction. The prediction step then

propagates the updated state, via the model, to the next mea-

surement time si.e., it is a short term forecastd. The aim of

this process is to synchronize the experiment and the model

by coupling them via the measurements.

The LETKF assimilation method is based on the en-

semble Kalman filter sEnKFd, in which the update and pre-

dict steps take place for an ensemble of k system states.
8
This

ensemble gives a finite sampling approximate representation

of the probability distribution function sPDFd of the system

state. The updated ensemble hju,1 . . .ju,kj results from an up-

date of the predicted ensemble hjp,1 . . .jp,kj,

update step:

hj j
p,1 . . . j j

p,kj + hmeasurementsj → hj j
u,1 . . . j j

u,kj s5d

predict step: j j+1
p,i = Gsj j

u,id i = 1 . . . k . s6d

The details of the update step are specific to the type of

EnKF used, but in all cases it is based on the original Kal-

man filter equations. This iterative procedure begins with an

initial predicted ensemble hj0
p,1 . . .j0

p,kj consisting of states

randomly sampled from the system attractor. The maximum

likelihood estimate of the system’s state after an update step

is the center of the updated ensemble, j̄u=1 /koij
i,u.

When no localization is used, as the system size grows

and the dynamical degrees of freedom increase, the neces-

sary number of ensemble members k must increase so as to

span the space of possible system states. This is a major

drawback of ensemble methods, preventing their use for spa-

tiotemporal chaos in large domains which would require an

infeasibly large k. For example, in our numerical experi-

ments we found for the Rayleigh–Bénard problem swith G

=20d that, using the EnKF, it was not computationally fea-

sible to use large enough ensembles to obtain results of any

use.
29
The LETKF method, which localizes the update step,

is advantageous since the number of ensemble members re-

quired is independent of the system size, making the method

applicable to large domains.
10,11

An explanation of the

LETKF’s update step s5d, including the method of localiza-

tion, is given in the Appendix.

B. Measurements

At times t jsj=1,2 . . . d we assume that several scalar

measurements are taken, so that at each time we can repre-

sent the set of measurements by an s-component vector y. In

the context of Rayleigh–Bénard convection, the elements of

the vector y are the intensities of shadowgraph pixels, y

= fIsx1 ,y1dIsx2 ,y2d . . . Isxs ,ysdg
T, where Isxl ,yld is the light in-

tensity at the location sxl ,yld of pixel l. Note that the location

of these intensity measurements need not occur on a uniform

mesh; we assume that their location is fixed but arbitrary.

Measurement noise is assumed to be normally distributed

with mean zero and ss3sd covariance matrix R. We assume

for simplicity that R=s2I, i.e., a multiple of the identity

matrix, so that measurement noise is homogeneous and un-

correlated with a standard deviation of s.

In general y is ideally si.e., without noised a function of

the system state, y=Hsjd; H is known as the observation

operator. Hsjd outputs the vector of pixel intensities y using

a finite resolution approximation to Eq. s4d, where for ¹
'

2 we

use a finite difference on the cylindrical mesh. Note that,

since we require ua¹
'

2 ūu!1 for Eq. s4d to be a good approxi-

mation, H is only weakly nonlinear. Both R and H are criti-

cal components for the update step s5d of the ensemble-based

methods.
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C. Parameter estimation

There is a straightforward extension of the ensemble

methods for cases in which some model parameters are un-

known. Consider the model

j j+1 = Gsj j,pd , s7d

where p is a vector of model parameters. We now formally

extend the system state to include the model parameters, g

=f j
p
g, where the extended state evolves as

g j+1 = Fj j+1

p j+1

G = FGsj j,p jd

p j

G = Ĝsg jd . s8d

Estimates of g sand therefore of the parameters pd result

from an implementation in the same way as for j, but in the

space of g vectors. In general, observation operator param-

eters may also be estimated in exactly the same way as

model parameters, by replacing Hsjd by Hsj ,pd;Ĥsgd.
Here p is a concatenation of model and observation operator

parameters.

D. Direct insertion

In order to assess how well the LETKF method is per-

forming, we will compare it to a more naive approach that

we call direct insertion sDId. With shadowgraph measure-

ments, no state variables are measured directly; however,

there is a one to one correspondence between a shadowgraph

and the vertically averaged field ūsx ,yd. With this in mind,

the DI update step adjusts the st= t jd predicted vertically av-

eraged temperature field ū j
psx ,yd to reflect the current mea-

surement exactly.

At the time t j of the shadowgraph measurement I jsx ,yd,
the DI method updates the predicted temperature field

u j
psx ,y ,zd by adding a correction du jsx ,y ,zd which is the

unique field that is quadratic in z, matches the boundary con-

ditions at uzu= 1

2
, and for which the updated field u j

usx ,y ,zd
=u j

psx ,y ,zd+du jsx ,y ,zd satisfies

I jsx,yd =
I+sx,yd

1 − a¹
'

2 ū j
usx,yd

.

This gives the update

du jsx,y,zd = sū j
usx,yd − ū j

psx,ydds 32 − 6z2d ,

where ū j
usx ,yd is found by solving a Poisson equation,

¹2ū j
usx,yd =

1

a
F1 − I+sxc,ycd

I jsxc,ycd
G , s9d

and sxc ,ycd is the location of the closest pixel to sx ,yd that is
observed. Note that with DI the velocity is not updated,

u j
usx ,y ,zd=u j

psx ,y ,zd, rather it develops through coupling

with the temperature during the simulation step,

Fu j+1
p sx,y,zd

u j+1
p sx,y,zd

G = GSFu j
usx,y,zd

u j
usx,y,zd

GD .

The z-dependence of the predicted temperature field is only

slightly affected by the update since, if measurements are

sufficiently frequent, the correction du jsx ,y ,zd is small. This
method is the most successful data assimilation technique we

have tested that does not use an update based on the Kalman

filter. It is meant to represent what one might try when mea-

surements are sufficiently dense and frequent, in which case

DI is a reasonable alternative to more sophisticated data as-

similation techniques.

IV. RESULTS: PERFECT MODEL

A. Setup of the numerical experiments

In this section we describe so-called perfect model tests

in which a time series of states, generated from a Boussinesq

simulation sG=20, e=1, Pr=1d of one particular initial con-
dition, serves as the “true” system. Simulated shadowgraph

measurements of this time series are generated every Dt

=1 /4 by using Eq. s4d with the parameters a=0.08, I+sx ,yd
=0.5. By this technique we generate a situation in which the

“true state” to be estimated and the model used to estimate it

both evolve under exactly the same dynamical rules. In Sec.

V we use real snot simulatedd observations of a physical

system for which the model dynamics is surely not an exact

description.

To reproduce the effects of measurement noise we add to

each pixel a small random error that is an uncorrelated nor-

mally distributed number with mean zero and standard de-

viation s. Measurements are made sparse by removing shad-

owgraph pixels, leaving only those which lie on observation

locations. We introduce the measurement density r

;s / spG2d as a measure of sparseness, where s is the number

of observation locations. For rù4 we randomly and uni-

formly distribute observation locations over the disk, for r

,4 the observation locations are placed on a Cartesian grid

covering the disk sgiving more repeatable results when using
sparse measurementsd.

We apply the LETKF and DI methods to our simulated

shadowgraphs to approximately reconstruct the original time

series of true states. Here we document their performance as

a function of measurement noise s and measurement density

r. Performance is quantified via the temperature and mean

flow RMS relative error,

Eustd =Îkuusx,y,z,td − utsx,y,z,tdu2l

kuutsx,y,z,tdu2l
,

Eūstd =Îkuūsx,y,td − ūtsx,y,tdu2l

kuūtsx,y,tdu2l
,

where utsx ,y ,z , td and ūtsx ,y , td are the temperature and

mean flow from the “true” time series of states, and k·l indi-
cates a spatial average.

Simulated shadowgraphs are assimilated at times t j, j

=1. . .J. During this process we converge on an estimate of

the system state sJ chosen large enough to ensure conver-

genced. At time tJ assimilation is turned off and the final

updated state estimate is used as an initial condition for a

long term forecast. Three measures of the quality of a state
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estimate are used: the predictability time t, defined as the

time when Eustd first crosses the ssomewhat arbitraryd value

of 0.15, and the minimum values attained by Eustd and Eūstd
during a forecast, denoted as Eu

min and Eū
min

. The latter two

measures are used because the initial state estimate does not

attain the minimum error, instead it occurs about 1 t
v
into the

forecast. This is a result of the simulation rapidly balancing

the fields by strongly suppressing field errors outside the

Busse balloon. This effect is very slight in the LETKF fore-

casts, but can be quite strong in DI forecasts.

B. Performance with noise/sparseness

We define a “standard” ideal scenario as measuring a

shadowgraph every t
v
/4 with r=127 scorresponding to a

4513451 shadowgraph imaged and s=0.01 sthis situation

can be achieved in an experimentd. Under these conditions

the DI and LETKF swith k=18 ensemble membersd typically
converge on a state estimate within ,t

v
and ,4t

v
, respec-

tively sobserving ,4 and ,16 shadowgraphs, respectivelyd.
Under these conditions, measurements are sufficiently dense

and frequent for DI to perform well; hence both DI and the

LETKF are effective for estimation of the sunobservedd
mean flow ūsx ,yd. However, the LETKF typically achieves a

minimum error Eū
min

that is less than half that of DI. The

forecast errors Eustd and Eūstd versus the forecast lead time t

for a typical state estimate are shown in Figs. 1 and 2. The

general character of the forecasts is an initial shadowing of

the true state, followed by rapid divergence. When diver-

gence begins, the spatial structure of the error is concentrated

near defects. This behavior is expected, as the magnitude of

the Lyapunov vector associated with the largest Lyapunov

exponent has maximum magnitude at the location of

defects.
30

Under nonideal conditions the LETKF proves much

more robust than DI. Results for sparse measurements,

shown in Fig. 3, demonstrate the large range of r for which

the LETKF converges. One can observe the existence of a

critical density of observations above which the LETKF does

not substantially improve and below which it fails to con-

verge. By adjusting the parameters of the LETKF’s update

step sas described in the Appendixd we have been able to

push the critical density as low as r=1.3 without a signifi-

cant loss of quality in the state estimate. DI on the other hand

exhibits a steady increase in Eu
min and Eū

min
as r is decreased,

as well as a rapidly deteriorating forecast when even a few

observation locations are removed.

Just as there is a critical measurement density, we have

also found evidence of a critical measurement frequency.

This frequency lies somewhere between 1 and 2 shadow-

graph images per vertical diffusion time for repeatable con-

vergence of the LETKF under ideal conditions. This corre-

sponds to about 1 Hz in a typical experiment.

FIG. 1. Typical temperature error Eustd of forecasts with s=0.01 and r

=127. The inset shows Eustd as each method converges on a state. Assimi-

lation is turned off at time tJ=3.25 in the small graph, corresponding to time

t=0 in the large graph. The dashed line is our chosen threshold, Eustd
ø0.15, below which we consider the forecasts “good.” The fluid parameters

are G=20, e=1, Pr=1.

FIG. 2. Typical mean flow error Eūstd of forecasts with s=0.01 and r

=127. The inset shows Eūstd as each method converges on a state. Assimi-

lation is turned off at time tJ=3.25 in the small graph, corresponding to time

t=0 in the large graph. The fluid parameters are G=20, e=1, Pr=1.

FIG. 3. Eu
min, Eū

min, and the predictability time t as the density of observa-

tions r is reduced with s=0.01.
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The magnitude of measurement noise is characterized by

normalizing it to the RMS intensity variation of a typical

shadowgraph, denoted ssg. In other words, the meaningful

signal to noise ratio is ssg /s. The variance ssg
2 is obtained by

averaging kuI jsx ,yd− kI jsx ,ydlu2l over many shadowgraph im-
ages fssg<0.12 when a=0.08 and I+sx ,yd=0.5g. Results,
shown in Fig. 4, indicate that DI forecasts are useful for low

to moderate noise levels; whereas the LETKF operates up to

and exceeding s=ssg.

We note that all results are from one particular realiza-

tion of the possible “true” time series, generated from one

particular initial condition. These results are typical of what

one can expect; however, variability can be expected spar-
ticularly in td for different data sets.

C. Parameter estimation

In our numerical parameter estimation experiments re-

ported below we take G=20, Pr=1 and we estimated p

= fR agT,
31
where a is the observation operator parameter in

Eq. s4d. The initial ensemble hg0
p,1 . . .g0

p,kj is constructed from
states sampled from the attractor in the j component, while

the p component is sampled from a normal distribution swith

mean p̄= fR̄ āgT and a diagonal covariance matrix with ele-

ments sR
2 and sa

2d. A typical convergence process is demon-

strated in Fig. 5. In this example the ensemble converges in

8t
v

on p= fR agT= f3414.26 0.07979gT6 f1.61 0.000072gT,

compared to the true value p= f3414.0 0.08gT sthe error esti-
mates for R and a are the standard deviations of the en-

semble after the last update at t= tJd. Remarkably, even when
measurements are sparse sr=3.6, near the critical measure-
ment densityd the parameter estimates are very good, p

= f3416.71 0.07976gT6 f9.9 0.00044gT.

When estimating the state and parameters simulta-

neously, the eventual values of Eu
min and Eū

min
are similar to

those shown in Figs. 3 and 4. That is, the ability to estimate

the system state is not adversely affected when parameters

are simultaneously estimated. It is important to note that es-

timating parameters sin g spaced requires more ensemble

members than when parameters are known; thus parameter

estimation tests were performed with k=20.

V. RESULTS: EXPERIMENT

The experiment differs from a perfect model scenario in

that G and H are now approximations, requiring robustness

to model error as well as observation operator error. In par-

ticular, the Boussinesq model is an approximation to the

more exact Navier–Stokes equations and our geometric op-

tics treatment is an approximation to a more involved physi-

cal optics treatment. For example, the Boussinesq equations

do not treat the temperature dependence of the fluid viscos-

ity, thermal expansion coefficient, or thermal conductivity;

each of which varies by 5%–10% over the temperature range

DT of the experiment.

The geometry, parameter values, and boundary condi-

tions are closely matched between experiments and simula-

tions. For our experiments, the fluid is a thin sd
=0.60260.002 mmd layer of carbon dioxide gas compressed

at a gauge pressure 31.5860.06 bar. The layer is surrounded

FIG. 4. Eu
min, Eū

min, and the predictability time t as measurement noise is

increased with r=127.

FIG. 5. Simultaneously estimating the parameters a swith true value 0.08d
and R swith true value 3414d. The error bars give a visual representation of

the ensemble spread, extending one standard deviation up and down. The

thick bars represent the case r=127 and s=0.01, while the thin lines rep-

resent the sparse measurement case, r=3.6 and s=0.01. The initial distri-

bution was given mean sR̄=3073, ā=0.07d and standard deviation ssR

=683, sa=0.02d.
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by a circular boundary of radius 12.5060.02 mm. In the

experiment, the top, bottom, and lateral boundaries are com-

posed of sapphire, aluminum, and polyethersulfone, respec-

tively; the thermal conductivities of the boundaries exceed

that of the gas by at least an order of magnitude. For this

fluid, the critical temperature difference for convection onset

is DTc=6.02 °C and the vertical diffusion time is t
v

=1.6660.01 s. A fixed temperature difference DT

=10.2360.09 °C is imposed across the layer at a fixed mean

temperature of 22.660.1 °C. These conditions correspond

to R=2902626 se=0.7d, Pr=0.97, and G=20.7660.08. The

temperature difference and pressure were stable to within the

indicated uncertainties.

DI and the LETKF were used to assimilate shadowgraph

images from the experiment. Images were taken every Dt

= t
v
/5 s3.0 Hzd as 3953395 bit maps sr=90d having ssg

=0.059. The measurement noise distribution was character-

ized by taking the difference between two images below on-

set. The distribution of pixel noise was normally distributed

with a standard deviation of 0.0032, a signal to noise ratio of

approximately 18.4 ss /ssg<0.054d.32

In experiments, the true fluid state is not available for

directly ascertaining the accuracy of state estimates. Instead,

we generate a forecast of the state estimate and compare the

predicted shadowgraph sequence to subsequent measure-

ments. We measure the forecast error by a technique which

emphasizes the location of rolls and defects. Shadowgraphs

are first filtered by removing high frequency components

swavelengths less than d /2d. We then threshold the image

such that half the pixels are set to 1 sthe remaining half are

0d. This filtering/threshold procedure is applied to both the

predicted and measured shadowgraph time series. The natu-

ral error measure is then the fraction of pixels incorrectly

predicted, denoted EI.

The LETKF was given as 4t
v
to converge on state and

parameter estimates; this is sufficient for both ideal sr=90d
and sparse observation sr=4d cases. Figure 6 shows a typical

state estimate from the LETKF. In particular, Fig. 6sdd shows

the vorticity potential from the extracted mean flow, a quan-

tity not directly observed. Typical examples of the forecast

error are shown in Fig. 7 for both methods. To the eye, DI

state estimates look nearly identical to the LETKF estimates.

However, DI forecasts are significantly worse than the

LETKF forecasts, which use their respective R estimates.

Forecasts demonstrate an approximately linear forecast error

growth up to the saturation point near EI=0.5. To our knowl-

edge, this is the first direct comparison of the Boussinesq

equations susing accurate boundary conditionsd with an ex-

periment on a one-to-one forecast basis.

The Rayleigh number can be accurately measured di-

rectly in experiments; thus parameter estimation is unneces-

sary for the purpose of determining R. However, we place an

emphasis on the ability of state and parameter estimates to

generate good forecasts. Thus we allowed the LETKF to

estimate R, as the model error can typically be compensated

for, to some extent, by adjustment of model parameters off

their measured values. In the dense measurement case sr
=90d, the LETKF converges on the parameter estimate R

=2625 sthe experimentally measured value is R=2902626d.

When r=4 the LETKF converges on the estimate R=2491.

These estimates are obtained consistently swith slight varia-

tiond throughout the experimental data set. In fact, forcing

the LETKF to use the measured R value harms the forecast,

bringing it up to the level of the DI forecast swhich uses the

true value R=2902d. This indicates that the advantage of the

LETKF in this case lies in its ability to estimate parameters

which are optimal sin the sense of producing the best fore-

casts when the forecast model is not exactd.
Figure 8 shows how the forecasts of Fig. 7 compare with

typical perfect model forecasts using the same parameters as

the experiment sR=2902, G=20.8, Pr=0.97d as well as the

same measurement frequency sDt= t
v
/5d, density sr=90d,

and approximately the same noise level ss /ssg=0.083d.

FIG. 6. An estimate of the fluid state after assimilating for 4t
v

sJ=20

framesd. sad The t= tJ shadowgraph measurement indicating columns of

warm rising fluid sdarkd and cold descending fluid slightd. sbd Temperature

profile ūsx ,yd from the state estimate. scd The modeled shadowgraph

Hsūsx ,ydd of the state estimate for comparison to sad. sdd The inferred vor-

ticity potential fsx ,yd which solves ¹2fsx ,yd=−ẑ · s¹3 ūd and indicates

regions of clockwise rotating sdarkd and counterclockwise rotating slightd
mean flow.

FIG. 7. Forecast error EI for DI and LETKF methods are shown for high

and low measurement densities. The LETKF forecast uses its parameter

estimate sR=2625 for r=90, R=2491 for r=4d while the DI forecast uses

the measured value R=2902.

013108-7 State estimation of spatiotemporal chaos Chaos 19, 013108 ~2009!

Downloaded 28 Sep 2012 to 130.207.140.200. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



Forecasts in the experimental situation are seen to be less

accurate than those in our perfect model tests. We note that,

among the uncertainties in the experiment, it is the uncer-

tainty in the aspect ratio which has the largest potential to

produce forecast error. Sensitivity tests with the model

showed that the measured uncertainties in all quantities, in-

cluding the aspect ratio, were too small to account for a

significant portion of the forecast error. Hence, we attribute

the discrepancy between the perfect model and experimental

results to non-Boussinesq effects.
33

VI. CONCLUSIONS

We have investigated two methods for estimating the

fluid state in Rayleigh–Bénard convection experiments, DI

and the LETKF. Both methods are effective for this purpose,

with the LETKF outperforming DI both when using experi-

mental data and in perfect model tests, especially when data

are sparse/noisy. One purpose of this paper is the introduc-

tion of data assimilation methodology to a community for

which DI-type techniques are the only techniques known,

and to demonstrate that more involved techniques can be

worth the effort. We have demonstrated that techniques de-

veloped for weather forecasting ssuch as the LETKFd can be

successfully applied to a real laboratory system. We believe

this is important as a means of introducing consideration of

data assimilation techniques to the large community of re-

searchers investigating spatiotemporal chaos in laboratory

experiments.
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APPENDIX: THE LETKF ALGORITHM

We now describe the LETKF’s update step s5d. This ap-

pendix is an adaptation to our Rayleigh–Bénard problem of

the technique developed in Ref. 12. Because of the measure-

ment noise we cannot know the system state exactly. Thus,

we seek the PDF for j. In order to apply the Kalman filter

methodology, we assume that this PDF is Gaussian, i.e., it is

proportional to exph−sj− j̄dTP−1sj− j̄d /2j. The center of this

distribution j̄ is the most likely state, while the error covari-

ance matrix P characterizes the uncertainty of that estimate.

For a given ensemble ji the mean and covariance are, respec-

tively, estimated by

j̄ ;
1

k
o

i

ji, sA1d

P ;
1

k − 1
ZsZdT, sA2d

where the columns of Z are the ensemble perturbations, Z

;fdj1udj2u¯ udjkg, with dji=ji− j̄. The ensemble is to be

constructed to represent the Gaussian PDF with mean sA1d
and covariance sA2d.

Let jmn be a vector whose components consist of the

collection of all elements of j that lie on grid points within a

horizontal distance L of the point srm ,fnd of the mesh used

by the model. We call jmn a local state and L the local region

radius. There are as many local regions as horizontal grid

points srm ,fnd, hence these regions are heavily overlapping

ssee Fig. 9d. When the center of the local region srm ,fnd is

near the radial boundary, the local region is the intersection

of a disk having radius L centered at srm ,fnd and the disk-

shaped domain with radius G centered on the origin. Note

that, since the problem of interest is essentially two dimen-

sional, local regions are indexed by two indices sm ,nd. The

three-dimensional nature of the system is reflected in the fact

that, for each horizontal grid point, the vector jmn contains

the state at all z levels. Associated with the updated and

predicted global ensemble members ju,i and jp,i are the local

ensemble members jmn
u,i and jmn

p,i sall local states, global

states, and ensemble states have an implied time index jd.
The predicted observation ensemble of shadowgraphs

FIG. 8. Forecast error EI for DI and LETKF methods in perfect model sPMd
tests and when using experimental data sEd. The LETKF forecasts use the

estimated value of R, while DI forecasts use the true value. The parameters

in all cases are R=2902, G=20.8, and Pr=0.97. Noise levels are low

ss /ssg=0.083 fPMg and s /ssg=0.054 fEgd, and the density of measure-

ments is high sr=90d.

FIG. 9. Two local regions are shown on a reduced resolution mesh. Every

grid point sm ,nd is the center of a local region. Associated with each local

region sm ,nd is the local state vector jmn consisting of state variables on the

indicated horizontal grid points and all vertical grid points associated with

them.
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hyp,1 . . .yp,kj is defined as yp,i=Hsjp,id sthe projection of the

predicted ensemble into the observation spaced. Let ymn
p,i be

all elements of yp,i within the local region sm ,nd. If there are

smn measurements made within the local region sm ,nd, then
the vector ymn

p,i has dimension smn. We form the matrix Ymn
p

;fdymn
p,1udymn

p,2u¯ udymn
p,kg where dymn

p,i =ymn
p,i − ȳmn

p and ȳmn
p is de-

fined as in Eq. sA1d. The local measurements ymn have an

associated local smn3smn covariance matrix Rmn, which is

equal to s2 multiplied by the smn3smn identity matrix. We

modify this matrix by forming the tapered diagonal covari-

ance matrix Qmn having i, ith element Qmn
ii ;fsesr / rfd

2

g2,
where r is the shorizontald distance from the grid point sm ,nd
to the measurement location associated with the ith element

of ymn, and r f is some falloff distance. This modification

effectively weighs measurements further from the grid point

sm ,nd less heavily when estimating the state at the point

sm ,nd. This type of distance-dependant modification to co-

variance matrices has been investigated previously.
17
We also

weigh current measurements more heavily than prior ones by

the method of multiplicative variance inflation in which the

predicted covariance matrix is inflated by a factor V2.1, to

lessen the influence of prior measurements on the current

state, and to compensate in some rough way for model error

and nonlinearities.
12,16

Ordinarily V is chosen empirically.

The perfect model tests reported used variance inflation V

=1.0–1.1, whereas results from experimental data in Sec. V

used an inflation factor of V<1.4.

We proceed to compute the updated ensemble. As de-

rived and discussed in Refs. 11 and 12, the procedure listed

below is followed. The inputs are the global predicted en-

semble jp,i and the measurement y. The output is the global

updated ensemble ju,i.

Compute each yp,i=Hsjp,id and ȳp.

Form the matrix Yp with columns dyp,i.

Compute j̄p and form the matrix Zp with columns djp,i.

For each grid point sm ,nd perform steps s1d–s7d:

s1d Form ymn from the elements of the current measurement

y, along with the tapered covariance matrix Qmn.

s2d Form ȳmn
p and Ymn

p from the relevant elements of ȳp and

Yp.

s3d Compute the updated k3k covariance matrix,

P̃mn
u = fsk − 1dV−2I + sYmn

p dTQmn
−1Ymn

p g−1. sA3d

s4d Next compute

wmn = P̃mn
u sYmn

p dTQmn
−1 symn − ȳmn

p d . sA4d

s5d Calculate the matrix

Wmn = fsk − 1dP̃mn
u g1/2 + wmn, sA5d

where, by adding a vector to a matrix we mean adding it

to each column of the matrix. The 1 /2 power here indi-

cates taking the positive symmetric matrix square root.

s6d Form the matrix Zmn
p ;fdjmn

p,1 udjmn
p,2 u ¯ udjmn

p,kg from the

relevant elements of Zp. Also form j̄mn
p from j̄p.

s7d Finally, compute the local updated ensemble perturba-

tions,

Zmn
u = Zmn

p Wmn. sA6d

As before, Zmn
u ;fdjmn

u,1 udjmn
u,2 u ¯ udjmn

u,kg, and the local

updated ensemble is given by jmn
u,i = j̄mn

p +djmn
u,i .

To complete the update step, components of the global

updated ensemble member ju,i at each horizontal grid point

sm ,nd are taken to be equal to the elements of jmn
u,i at the

center of local region sm ,nd. Note that each local region is

assimilated independently, allowing for massive paralleliza-

tion.

To estimate parameters, simply replace j with g every-

where in the above steps. This formulation assumes state

variables are spatially extended. Thus, when adding global

parameters to the state space we must assume that they are

spatially dependant. That is, when estimating both the

Rayleigh number and a of Eq. s4d sp= fR agTd, the state g is

the concatenation of j and p̂, where p̂

= fR11 . . .Rmn . . .a11 . . .amn . . . g
T. The LETKF is then aug-

mented by averaging these parameter values over the grid,

after the update step, to form global parameters. This average

is performed for each global ensemble member gu,i by set-

ting its p̂ component to p̂u,i= fR̄i R̄i . . . āi āi . . . gT, where R̄i and

āi are the spatial averages of R and a for the ith ensemble

member. The model G and observation operator H then use

the parameters R̄i and āi when applied to ensemble member

i. If the model allows for spatially dependent parameters,

then this last averaging step is not necessary.

The LETKF formulation is advantageous since the num-

ber of ensemble members required for convergence is inde-

pendent of the system size,
10
making the method applicable

to large domains. The number of ensemble members will

presumably scale with the number of dynamical degrees of

freedom in a local region. We used a local region radius of

L=2.6d and a falloff distance of r f=1.4d in the perfect model

section. For the experimental data, we found that a local

region radius of L=2.6d and a falloff distance of r f=1.0d

worked well. In both cases, L is comparable to the correla-

tion length of spiral defect chaos of 2.7d when e=0.7 and

2.3d when e=1.0.34 As the ensemble converges, it tends to
confine itself to a space of dimension lower than k, indicating

that one could optimize by “pruning” the ensemble size as it

converges. All the results in this paper are for a constant k

=18 sor k=20 when estimating parametersd, but we have

found that starting with k=18 and reducing to k=8 linearly

within 10 measurement times gives similar results with a

significant reduction in computation time. In addition, the

strength of the model nonlinearities is largest when the en-

semble spread is large sduring the first few assimilation

stepsd, thus one can begin assimilation with a large V and

reduce it linearly to speed convergence. This procedure was

found to be successful, but was not performed in the results

reported here.
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