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Algebraic topology (homology) is used to characterize quantitatively non-Oberbeck–
Boussinesq (NOB) effects in chaotic Rayleigh–Bénard convection patterns from
laboratory experiments. For fixed parameter values, homology analysis yields a set of
Betti numbers that can be assigned to hot upflow and, separately, to cold downflow
in a convection pattern. An analysis of data acquired under a range of experimental
conditions where NOB effects are systematically varied indicates that the difference
between time-averaged Betti numbers for hot and cold flows can be used as an
order parameter to measure the strength of NOB-induced pattern asymmetries. This
homology-based measure not only reveals NOB effects that Fourier methods and
measurements of pattern curvature fail to detect, but also permits distinguishing
pattern changes caused by modified lateral boundary conditions from NOB pattern
changes. These results suggest a new approach to characterizing data from either
experiments or simulations where NOB effects are expected to play an important
role.
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1. Introduction

Convective flow plays a key role in numerous technological processes and natural
phenomena, including the growth of semiconductor materials and the dynamics of the
Earth’s atmosphere, ocean and mantle (Getling 1998). Rayleigh–Bénard convection
(RBC) of a horizontal fluid layer, confined between two thermally conducting plates,
heated from below is considered a paradigm to investigate the nature of convection
and has motivated numerous numerical and laboratory studies (see for example
de Bruyn et al. 1996; Bodenschatz, Pesch & Ahlers 2000, and references therein).
The exact equations governing the fluid motion in natural convection are difficult to
manage. In order to simplify the equations by reducing the nonlinearity, the Oberbeck–
Boussinesq (OB) approximation (Oberbeck 1879; Boussinesq 1903) is frequently
used in most theoretical and numerical studies of thermal convection, including
RBC. Physically, the OB approximation ignores the temperature dependence of all
fluid properties, except for the temperature-induced density variation retained in the
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buoyant force that drives the flow. Flows observed in nature or in the laboratory
never fully commit to this approximation, and non-Oberbeck–Boussinesq (NOB)
effects inevitably arise. Characterizing the strength of NOB effects in observed flows
could lead to the development of improved models; however, heretofore, there has
been no systematic way to quantify NOB effects starting from experimental data.

We present the use of algebraic topology (computational homology) to characterize
the departures from the OB approximation in RBC experiments. The homology
analysis is performed on complex patterns in spatio-temporally chaotic data acquired
from experiments where NOB effects are systematically varied. It is well known
that solutions to the OB equations exhibit reflection symmetry about the midplane
of the layer. Characterization based on homology not only reveals the breakdown
of reflection symmetry but also quantifies the strength of the asymmetries. This
characterization is empirical; at present, very little is understood theoretically about
the algebraic topology of solutions to the governing equations for convection or for
any other fluid flow. Nevertheless, as we discuss, computational homology analysis
provides insight into NOB effects that other, more conventional techniques of pattern
analysis fail to capture.

RBC experiments modelled by the OB approximation are described by three
dimensionless quantities. The aspect ratio Γ measures the geometry of the convection
cell and is defined by Γ = r/d , where r is the radius and d is the depth of a cylindrical
convection cell. The Rayleigh number Ra and the Prandtl number σ that depend on
the fluid properties are defined as

Ra =
αgd31T

κν
, (1.1)

σ =
ν

κ
, (1.2)

where α is the thermal expansion coefficient, g is the acceleration of gravity, 1T is
the temperature difference between the layers, κ is the thermal diffusivity, and ν is
the kinematic viscosity. As the temperature difference reaches a critical value 1Tc

(Rac = 1707.8), the destabilizing mechanism (buoyancy) overcomes the stabilizing
mechanisms (heat and momentum diffusion), and the onset of convection occurs.
Under Boussinesq conditions, gases exhibit straight-roll convection at onset via a
supercritical bifurcation (Schluter, Lortz & Busse 1965); the convection pattern of
spatial variation is composed of rolls with hot upflow and cold downflow. As the
system is driven away from the onset by the control parameter (reduced Rayleigh
number)

ǫ =
Ra − Rac

Rac

, (1.3)

the pattern of convective flows becomes time dependent and exhibits complex spatial
structure. In particular for the σ ≈ 1 case and sufficiently large ǫ we consider here,
the system demonstrates a transition to the state known as spiral-defect chaos (SDC;
first observed by Morris et al. 1993), where the convection pattern of hot and cold
rolls with a spatio-temporally chaotic behaviour is deformed into rotating spirals and
riddled with dislocations, disclinations and grain boundaries.

When the fluid’s physical properties change little between the top and the bottom
of the layer, the OB approximation describes the convective flow well; however, when
the properties vary significantly over the layer depth, NOB effects should be taken into
account. The departures from the OB approximation are characterized quantitatively
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by the non-dimensional parameter Q introduced by Busse (1967),

Q =

4
∑

i=0

γiPi (1.4)

with

γ0 = −
ρb − ρt

ρm

, γ1 =
αbρb − αtρt

2αmρm

, γ2 =
νb − νt

νm

,

γ3 =
λb − λt

λm

, γ4 =
cpb
− cpt

cpm

,



















(1.5)

where ρ and cp are density and specific heat at constant pressure, respectively,
and λ= κρcp is the thermal conductivity. (The subscripts b, t and m indicate fluid
properties evaluated at bottom, top and mean temperature of the cell, respectively.)
The coefficients Pi are linear functions of σ−1 and first given by Busse (1967) in the
limit σ →∞. Bodenschatz et al. (2000) reported recalculated and corrected values of
Pi and these coefficients were confirmed in a recent work by Ahlers et al. (2009).
Typically, gases and liquids have positive and negative values of Q, respectively.

Strictly speaking, Q describes a specific NOB effect (hexagon-roll competition) to
lowest order in γi; thus, the use of Q has a strong theoretical basis only in the limit
of weak NOB effects (small γi) near convective onset (ǫ≪ 1). Nevertheless, theory
and experiments in strongly nonlinear regimes do use γi only to leading order as
one way to capture NOB effects. For example, Madruga, Riecke & Pesch (2006)
compute hexagonal pattern stability diagrams in the range 0<ǫ < 1.5 using leading
order γi that account for large ǫ (see § 2.1). Niemela & Sreenivasen (2003) used Q

to characterize NOB effects in turbulent convection for Ra in the range 106–1015.
Our use of Q to describe NOB effects is in the same spirit: a quantity that, to date,
does not yet have a firm theoretical basis in the parameter range where we use it,
but, nevertheless, is related to NOB effects and is useful because it can be computed
knowing only the flow’s parameter values. With this limitation in mind, we show
that NOB effects can be quantified in the sense that Q shows a strong empirical
correlation to topological properties computed from observed flow patterns.

2. Experiments

We measure convective flow in a horizontal layer of compressed gas cooled from
above and heated from below in a cylindrical convection cell (a similar apparatus
is described in de Bruyn et al. 1996). Single-phase gases CO2 and SF6 are used as
convective fluids, bounded by circular filter paper or plastic (polyethersulfone) lateral
walls. The thermal conductivities of the paper and the plastic walls are, respectively,
about a factor of 4 and 10 times larger than the thermal conductivity of the fluid used
in experiments. Top and bottom temperatures are controlled within ±0.02◦C, while
the pressure is controlled within ±0.04 bar. The variation of the depth under pressure
is less than 5 µm along the cell. The convective flow patterns are visualized by using
the shadowgraph technique that measures variations in the vertically averaged index
of refraction.

We perform experimental runs in the SDC regime under different experimental
conditions in order to study the departure from the OB approximation. Key parameter
values for these conditions are given in table 1. We use gaseous SF6 in three
experiments (labelled as E-I, E-III and E-IV) with a plastic lateral boundary and
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Experiment E-I E-II E-III E-IV
Fluid SF6 CO2 SF6 SF6

Boundary Plastic Paper Plastic Plastic
d (µm) 590 649 595 588
Γ 31.6 30.8 31.4 31.8
P (bar) 9.81 30.88 12.90 17.22
1Tc (◦C) 12.37 5.49 5.01 1.70
tv (s) 1.2 1.8 1.8 2.7
σ 0.84 0.99 0.88 0.95
γ c

0 0.0605 0.0364 0.0294 0.0137
γ c

1 −0.0830 −0.0567 −0.0447 −0.0243
γ c

2 0.0975 0.0423 0.0440 0.0179
γ c

3 0.0625 0.0141 0.0213 0.0045
γ c

4 0.0106 −0.0360 −0.0032 −0.0107
Qc 1.57 0.97 0.75 0.38

Table 1. NOB effects with differing strengths are studied systematically by performing
experiments under different conditions, E-I, E-II, E-III and E-IV. As shown in the table,
each condition is characterized by a choice of fluid and lateral boundary along with key
parameter values, including the cell depth d , the aspect ratio Γ , the pressure P , the critical
temperature difference across the cell 1Tc , the vertical diffusion time tv = d2/κ , the Prandtl
number σ , and the coefficients γ c

i used to calculate the Busse parameter Qc at onset.

gaseous CO2 in one experiment (E-II) with a paper boundary. The aspect ratio
Γ is held nearly constant for all experiments. The onset Busse parameter Qc is
calculated from (1.4) with the coefficients γ c

i evaluated at the onset of convection
(ǫ =0). (The fluid properties necessary to calculate the coefficients γi in (1.5) for
the range of experimental parameters are available at journals.cambridge.org/flm
as supplementary material.) The experimental conditions E-I and E-IV represent,
respectively, the largest and the smallest departures from OB convection at onset.

The NOB effects near onset can affect the critical Rayleigh number Rac if they
are strong enough. In a recent study by Ahlers et al. (2009), the NOB corrections
to Rac = 1707.8, i.e. δRac = RaNOB

c − Rac, are computed numerically. The corrections
are small in our experiments. For example, at onset δRac = 1.7 in E-I and δRac≈ 0
in E-IV (for calculations see (6.9) and table 6 in Ahlers et al. 2009). We perform
experiments at different ranges of ǫ by increasing the temperature difference 1T at
a constant mean temperature T̄ (measured at onset) between top and bottom plates.
The correction to Rac used to estimate ǫ at larger 1T is small even for the case where
NOB effects are largest at onset, e.g. for ǫ = 0.8 in E-I, the correction to Rac is 0.3 %.

Away from the onset (ǫ > 0), the NOB effects become stronger. The ǫ dependence
of NOB effects, especially in numerical simulations, is usually characterized by the
coefficients (Madruga et al. 2006; Madruga & Riecke 2007a)

γi
∼= γ c

i (1 + ǫ), (2.1)

which is obtained by keeping only the leading-order temperature dependence in a
Taylor expansion of all fluid properties. In experiments with real gases, (2.1) holds
for order-one values of ǫ. For instance, at ǫ = 0.8, the values of γi evaluated from real
gas properties and the values of γi obtained via (2.1) agree with one another by a
mean deviation of 0.8 % and 0.3 % for experiments E-I and E-II, respectively. Here σ

evaluated at the top and bottom temperatures differs only slightly from σ evaluated
at T̄ ; this variation of σ over increasing ǫ can be estimated from (1/σ )(dσ/dǫ), which
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Run Experiment Reduced Rayleigh number Busse parameter T̄ (◦C) tobs(th) N

R-I E-I ǫ = 0.8 Q = 2.80 29.92 53 5000
R-II E-II ǫ = 0.8 Q = 1.75 20.55 50 15 000
R-III E-III ǫ = 0.8 Q = 1.35 27.51 208 5000
R-IV E-IV ǫ = 0.8 Q = 0.65 25.85 130 5000
R-V E-III 1.0 6 ǫ 6 2.7 1.50 6 Q 6 2.79 27.51 10 5000
R-VI E-IV 1.0 6 ǫ 6 3.0 0.73 6 Q 6 1.44 25.85 10 5000

Table 2. Key conditions are shown for experimental runs R-I, R-II, R-III, R-IV, R-V and
R-VI to probe NOB effects in SDC. Q is estimated from (1.4) with the fluid properties
(see supplementary material) evaluated at ǫ values. The number of images N is acquired in
experiments in observation times tobs in units of the horizontal diffusion time th (th = Γ 2tv).

(a) (b)

(c) (d)

Figure 1. Shadowgraph patterns at fixed ǫ = 0.8 and different values of Q illustrate that
variations in NOB effects are indistinguishable by eye. The images are shown for experimental
runs (a) R-I, (b) R-II, (c) R-III and (d ) R-IV (table 2). Dark and bright regions in images
represent hot and cold flows, respectively. Homology computations yield the following set
of Betti numbers for these patterns {β0c, β0h, β1c, β1h}: (a), {54, 29, 1, 9}; (b), {42, 28, 3, 8};
(c), {43, 34, 0, 4}; (d ), {43, 44, 4, 4}. How Betti numbers are computed from shadowgraph
images of convection patterns can be found in detail with illustrations in Krishan et al. (2007).

is equal to 0.015, 0.040, 0.010 and 0.009 for E-I, E-II, E-III and E-IV, respectively,
for ǫ 6 3.0.

The temperature difference 1T is increased in each experiment from onset at a
constant T̄ to reach ǫ values for which SDC is fully developed. Shadowgraph image
time series of spatio-temporally chaotic flow are acquired at a fixed frame rate for
long observation time intervals, i.e. the intervals are large multiples of the horizontal
diffusion time th (th =Γ 2tv , where tv is the vertical diffusion time). Four different runs,
indicated by R-I, R-II, R-III and R-IV, are performed at ǫ =0.8, as summarized
in table 2. Sample images of patterns from these runs are shown in figure 1.
Moreover, experimental runs R-V and R-VI are performed to probe the departure
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from the OB convection at higher Rayleigh numbers (ǫ > 1). In all experimental runs,
the shadowgraph images are pre-processed for the analysis by first subtracting a
background image taken below the onset from images and then by normalizing each
image by the background to reduce non-uniformities due to the illumination.

3. Results

3.1. Homology analysis

Algebraic topology, in particular homology, provides a computable tool for
characterizing global geometric properties of nonlinear objects. A package of
computer programs (Kaczynski, Mischaikow & Mrozek 2004; CHomP 2010) has
been developed to compute the homology groups of topological spaces in arbitrary
dimensions. Given a topological space X of the type considered in this paper, the
homology groups of interest take the form Hk(X) = Zβk (X), k = 0, 1, where the non-
negative integers βk(X) are referred to as the Betti numbers of X. Each βk(X) describes
a unique topological property of X.

The shadowgraph patterns of figure 1 are used to define two distinct topological
spaces of interest: the regions of cold and hot flows. The median value of intensity for
all pixels in an image is used as a threshold value to form two distinct binary images
that represent the locations of hot and cold flows. Any pixel value lower (higher)
than the threshold value is defined to belong to the hot (cold) topological space
Xh (Xc). The resulting binary images are used to obtain {β0c, β0h, β1c, β1h}, which
provides a reduced topological description of the pattern (figure 1). In particular, β0c

(β0h) counts the number of distinct connected cold (hot) components and β1c (β1h)
counts the number of holes formed within Xc (Xh). Alternatively, β1c (β1h) counts the
number of hot (cold) connected regions completely surrounded by cold (hot) flow.
We note that the measurements of the Betti numbers are robust to variations in the
choice of threshold value (Krishan et al. 2007).

Because of its combinatorial nature, there are no errors involved in computing the
homology of a topological space defined in terms of pixels. Thus, the only possible
error in the Betti number ascribed to the hot and cold regions arises from the
approximation due to the pixelation of the image. Since the topological structures of
these regions change with time, it is likely that errors do arise. Nevertheless, the results
of Mischaikow & Wanner (2007) indicate that sufficiently high-resolution images lead
to a high probability of correctly determining the Betti number.

Krishan et al. (2007) applied computational homology to convection patterns in
RBC and suggested that the asymmetries revealed by Betti numbers are due to the
NOB effects. They also showed that the strength of topological asymmetries increases
with increasing bottom layer temperature while holding the top layer temperature
constant in an experiment performed with CO2. This paper explores the quantitative
connection between the degree of the topological asymmetry and the measure Q in
controlled RBC experiments.

We first focus on the time-averaged values of the Betti numbers
{〈β0c〉, 〈β0h〉, 〈β1c〉, 〈β1h〉} calculated from the time series of binary images in
experimental runs at ǫ =0.8. The distinction between cold and hot flows based
on the mean Betti numbers becomes more substantial as Q increases, as seen in
figure 2. The nearly equal number of components and holes points out the strong
symmetry between cold and hot flows for the run R-IV with the weakest NOB effects;
nevertheless, the asymmetry 〈β0c〉> 〈β0h〉, 〈β1h〉> 〈β1c〉 is significant for the run R-I,
which indicates a strong breakdown of the OB approximation. The asymmetry is also



Measuring the departures from the Boussinesq approximation 549

0.65 1.35 1.75 2.80

20

30

40

50

60

R-IR-IIIR-IV R-II

Q

0.65 1.35 1.75 2.80

Q

(a)

〈β
1
〉

〈β
0
〉

(b)

 

 
〈β0c〉

〈β0h〉

0

4

8

12

R-IR-IIIR-IV R-II
 

 
〈β1c〉

〈β1h〉

Figure 2. Topological asymmetries increase with the Busse parameter Q at constant ǫ.
(a) The mean zeroth Betti numbers 〈β0c〉 (filled circles) and 〈β0h〉 (open circles); (b) the
mean first Betti numbers 〈β1c〉 (filled diamonds) and 〈β1h〉 (open diamonds) are calculated
from the time series of Betti numbers for the experimental runs (table 2) at ǫ = 0.8. In
computations, 5000 images are analysed for the runs R-I, R-III and R-IV, while 15 000 images
are used in computations for the run R-II. The error bars are defined as the standard deviation
of the Betti numbers obtained from the time series of shadowgraph images at a given ǫ.
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Figure 3. Temporal convergence of the mean zeroth Betti number in R-II. 〈β0c〉 (filled
triangles) and 〈β0h〉 (open triangles) are shown as a function of observation time. Each data
point corresponds to an average of Betti numbers from the analysis of 3000 images. The
results for the original data of 15000 images in 50th (figure 2a) are shown by circles.

apparent for the run R-II, where a different type of convective fluid and physical
boundary is used. These results suggest that the outputs of homology, especially the
zeroth Betti number β0, can be used to study the degree of departure from the OB
convection.

The time averages of the Betti numbers are well defined for a wide range of
observation time intervals (figure 3). We demonstrate the temporal convergence of
the mean zeroth Betti number in time by truncating the time series of β0c and β0h

with different sampling rates in R-II. As shown in figure 3, the results obtained by
averaging the Betti numbers of the same size are nearly constant with increasing
observation time.

It is known that shadowgraph visualization can introduce nonlinearities depending
on visualization conditions; these nonlinearities may affect the accuracy of the
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Figure 4. Robustness of the measurement of the mean zeroth Betti number with respect to
wavenumber distribution. The zeroth Betti numbers, 〈β0c〉 and 〈β0h〉, computed for the images
filtered with a two-dimensional Gaussian filter of variance η in units of k. Computations are
performed for two data sets, R-I (circles) and R-IV (squares). Filters with η(k = 2.45) and
η(k = 7.83) keep 59 % and 95 % of the total power, respectively. k is measured in units of d−1.

measurement. Robustness of the measurements of Betti numbers has been shown
with respect to different effective optical distances resulting in different strengths of
the nonlinearities (Krishan et al. 2007). These nonlinearities may also introduce higher
harmonics in the wavevector (k) distribution, where the strength of the harmonics
increases with ǫ. Here, we investigate how the measurements of Betti numbers depend
on the k-distribution (see § 3.2). For this purpose, a two-dimensional Gaussian filter
is centred at k = 0 with a variance η(k) and applied to the Fourier domain of the
images to alter the distribution and to reduce the power in higher harmonics. Figure 4
demonstrates 〈β0c〉 and 〈β0h〉 computed for the images filtered with different η(k). The
weak asymmetry for weakly NOB flows (R-IV) and the strong asymmetry for strongly
NOB flows (R-I) are clearly evident even for the filter with η(k =2.45), which retains
only 59 % of the total power in the original images. Computations performed with a
Gaussian filter centred at the peak of the k-distribution also yields similar results.

In order to demonstrate that the asymmetries, when they exist, extend throughout
the cell, we performed computations in the subregions, which are obtained by sampling
the images spatially with a circular window of increasing radii r centred at the centre
of the convection cell. The zeroth Betti numbers are computed at each subregion. The
scalings of 〈β0c〉 and 〈β0h〉, computed for many subregions for R-II and five subregions
for R-IV, are displayed with increasing subregion area in figure 5(a). The circular
regions for r < 5d are too small to extract information since only a few convection
rolls (in binary representation) can fit such small regions. As soon as the subregion is
large enough, the asymmetry is detected by Betti numbers. It is convenient to define
an order parameter 〈1β0〉= 〈β0c−β0h〉 to examine the scaling of the asymmetry along
the cell. As seen in figure 5(b), the asymmetry, 〈1β0〉> 0, grows with the area; it is
noticeable for subregions chosen as small as the half of the cell in R-II. On the other
hand, the symmetry, 〈1β0〉≈ 0, is preserved along the cell in R-IV, i.e. the asymmetry
between cold and hot flows is indistinguishable whether in a small region (r = 5d) or
in a large region that almost covers the entire cell (r = 30d).

The more the system is driven away from the onset, the more NOB the fluid becomes
as Q grows with the Rayleigh number. We analyse the data sets from R-V and R-
VI described in table 2 to investigate the departure from the OB approximation at
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Figure 5. Scaling of the topological symmetry and asymmetry with system size. The zeroth
mean Betti numbers are shown as a function of the area of circular subregions of radius r
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Figure 6. Topological asymmetries grow with the Rayleigh number. (a) 〈β0c〉 (filled symbols)
and 〈β0h〉 (empty symbols) are shown as a function of ǫ for runs R-V (circles) and R-VI
(squares). Each data point is obtained by averaging the Betti numbers from the analysis of
5000 images corresponding to an observation time of 10th at each ǫ. (b) The zeroth Betti
numbers are shown as a function of Q estimated at the ǫ values in R-V and R-VI.

higher Rayleigh numbers (1 6 ǫ). Figure 6(a) exhibits 〈β0c〉 and 〈β0h〉 computed for 18
increasing ǫ values (with an increment of 0.1 in ǫ) in R-V, and for 5 increasing ǫ values
(with an increment 0.5 in ǫ) in R-VI. The difference between 〈β0c〉 and 〈β0h〉 starts
to become more substantial as ǫ increases for each run. The different runs exhibit a
different dependence on ǫ; however, when plotted as a function of Q (figure 6b), a
curve for 〈β0c〉 and another curve for 〈β0h〉 appear to describe the data from both
runs.

Figure 6(b) suggests that the zeroth Betti number data from all experimental runs
may be represented by a plot of the order parameter 〈1β0〉 as a function of Q

(figure 7). The collapse of the data on a single curve suggests that the strength of the
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topological asymmetry is solely dependent on NOB effects as characterized by Q. For
a range of Q, 〈1β0〉 monotonically increases with Q. However, for Q sufficiently large
(here, Q > 2), 〈1β0〉 is nearly constant at large Q; specifically, we find 〈β0c〉≈ 2〈β0h〉
in R-V and R-I for Q > 2. Clearly, this result suggests that 〈1β0〉 does not distinguish
flows with different Q when Q is sufficiently large. However, we do not know the
physical origin of this ‘saturation’ of 〈1β0〉 for large Q; nor do we know whether
this behaviour might be different for flow parameters not explored here (e.g. different
Prandtl number and aspect ratio).

3.2. Other analysis methods

When a new technique for pattern analysis is introduced, it is sensible to examine the
question whether more established methods could also be used to accomplish
the same purpose. Here, we apply alternative characterization techniques to analyse
the same convection pattern data. Although these techniques provide a variety of
significant information about the global features of the patterns, as demonstrated
next, they fail to identify the asymmetries that arise between cold and hot flows, even
under the strong NOB effects.

The structure factor S(k), the time average of the power (the square of the modulus)
of the two-dimensional Fourier transform, is most often used to extract spatial
information about the patterns (Morris et al. 1993, 1996; Hu, Ecke & Ahlers 1995).
We perform an azimuthal average in wavevector (k) space on each discrete Fourier
transform of the image. The azimuthally and time-averaged S(k) is obtained from the
time series of images. The average wavenumber 〈k〉,

〈k〉 =

∫

|k|S(k) d2
k

∫

S(k) d2
k

=

∫ ∞

0

k2S(k) dk

∫ ∞

0

kS(k) dk

, (3.1)
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Figure 8. The analysis based on two-dimensional discrete Fourier transform produces nearly
identical results for the patterns, on which NOB effects are varied. (a) The azimuthally
and time-averaged structure factor S(k) corresponding to the runs at ǫ =0.8. (b) The mean
wavenumber 〈k〉 as a function of Q. The error bars in (b) represent one standard deviation
which corresponds to the inverse of the correlation length ξ−1.

and the correlation length ξ from the variance,

ξ−2 =

∫ ∞

0

(k − 〈k〉)2kS(k) dk

∫ ∞

0

kS(k) dk

, (3.2)

are calculated from the distribution of S(k) (Morris et al. 1993). S(k) computed for
the data sets at ǫ = 0.8 is shown in figure 8(a). Figure 8(b) presents 〈k〉 as a function
of Q, where the vertical extent is given by ξ−1. The data produce nearly identical
wavenumber distributions as Q is varied. In addition, the correlation area (∝ ξ 2)
remains a constant percentage (nearly 1.5 %) of the total cell area for all cases. We
note that S(k) does not provide quantitative characterization between cold and hot
flows since it produces identical results for complementary images as dark (bright)
pixels are transformed into bright (dark) pixels.

Methods of characterizing pattern textures have also been used previously to
quantify important features of flow patterns (Heutmaker & Gollub 1987; Hu et al.
1995); however, this approach fails to detect non-Boussinesq effects. In our study, the
texture of a cold (hot) flow pattern is obtained from a skeleton-line representation
corresponding to maximum (minimum) intensity regions in the image of a convection
pattern. On these textures, we calculate the average roll radius of the curvature
〈R〉= 〈2/|∇ · n|〉 (a measure of how much a roll bends), the average roll length 〈L〉,
and the average roll obliqueness at the sidewall 〈θ〉= 〈cos−1(|s · n|)〉, where n is the unit
normal vector parallel to the local wavevector and s is the sidewall normal vector. (A
detailed discussion of texture analysis methods can be found elsewhere; Heutmaker &
Gollub 1987; Hu et al. 1995.) In figure 9, we see that none of these measures of texture
exhibit dependence on the strength of non-Boussinesq effects as characterized by Q.
In particular, the values of 〈R〉, calculated both for the full circular region of the cell
and a smaller circular region (r = 20d), remain quite close to each other even as Q

is increased by a factor of 4 (figure 9a) with no observable distinction between cold
and hot flow patterns (〈Rc〉≈ 〈Rh〉). Similarly, we find that 〈Lc〉≈ 〈Lh〉 (figure 9b)
and 〈θ〉 is constant (figure 9c) over a wide range of Q. In contrast, we do find



554 H. Kurtuldu, K. Mischaikow and M. F. Schatz

0.65 1.35 1.75 2.80
3

4

5

6

7

8

Q

0.65 1.35 1.75 2.80

Q

0.65 1.35 1.75 2.80

Q

〈R
〉 

(d
)

〈L
〉 

(d
)

R-IR-IIIR-IV R-II

(a) (b)

(c)

 

 
〈Rc〉 

〈Rh〉 

〈R
c
20d〉 

〈R
h
20d〉 

300

500

700

900

1100

R-IR-III R-IIR-IV

 

 

〈Lc〉 

〈Lh〉 

〈L
c
20d〉 

〈L
h
20d〉 

45

50

55

60

〈θ
〉 

(d
eg

.)
 

R-IR-III R-IIR-IV
 

 
〈θc〉

〈θh〉

Figure 9. Measures calculated from the texture of the patterns for the runs at ǫ =0.8 show no
distinction between cold and hot flow patterns as a function of Q. The number of images used
at each point is given in table 2. The subscripts c and h indicate the obtained quantities for
cold and hot flows, respectively. (a) The time-averaged radius of curvatures 〈R〉 calculated for
full system size and a circular region of radius r = 20d inside the cell. (b) The time-averaged
roll length 〈L〉 shown for full system size and a circular region of radius r = 20d . (c) The
time-averaged angle of obliqueness 〈θ〉.

that texture analysis can detect differences in sidewall forcing of convective flows. In
the case with sidewalls whose thermal conductivity matches the fluid (no forcing),
rolls terminate perpendicular to the walls (θ =90◦). However, in typical experiments,
some sidewall forcing arises due to the mismatch in the thermal conductivity between
the sidewall and the fluid that induces a horizontal temperature gradient near the
wall. This mismatch induces forcing that tends to push the rolls to be more parallel
to the sidewall (Hu, Ecke & Ahlers 1993; Xi & Gunton 1995). This effect can be
seen in figure 9(c); convection rolls are more parallel to sidewalls made of plastic
(larger forcing due a larger conductivity mismatch) than rolls in the presence of paper
sidewalls (which have a smaller conductivity mismatch).

4. Discussion and conclusion

Our results are consistent with well-known symmetries/asymmetries of convective
flows that arise at onset (de Bruyn et al. 1996). Under Boussinesq conditions, gases
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(a) (b)

Figure 10. Contrary to convection in gases, patterns in liquids with negative Q have the
asymmetry β0h > β0c, β1c >β1h. For instance, temperature fields from an NOB simulation in
a circular cell of water are shown at (a) ǫ = 0.6 and (b) ǫ =1.0, after Madruga & Riecke
(2007b). All coefficients, γ c

0 = 0.0036, γ c
1 = 0.2122, γ c

2 =−0.2725, γ c
3 = 0.0352 and γ c

4 =−0.0013
corresponding to Qc =−1.84, are retained. The diameter of the cell is equal to 16 times
the pattern wavelength at onset. Computations yield the following set of Betti numbers
{β0c, β0h, β1c, β1h}: (a), {11, 37, 6, 0}; (b), {5, 48, 10, 1}.

exhibit straight-roll convection via a supercritical bifurcation. Homology simply yields
β0c = β0h = N and β1h = β1c = 0 for N straight rolls in a pattern (without sidewall
forcing at onset). In the NOB case, the flow exhibits a transcritical bifurcation at
onset where gases with positive Q (as in our experiments) display g-hexagons with
(cold) downflow in the centre (see sample patterns in Bodenschatz et al. 1991).
Homology returns β0c = M >β0h =1 and β1h =M >β1c = 1 for a pattern containing
M g-hexagonal cells; in other words, the qualitative result of NOB effects leading
to β0c >β0h, β1h >β1c patterns at onset is consistent with the interpretation that
NOB effects are responsible for our observations of β0c > β0h well above onset. We
note that hexagons are not observed over the parameter range examined in our
study; nevertheless, Madruga & Riecke (2007a) have suggested that resonant triad
interactions may be acting far from onset in a similar manner as near-convective
onset to enhance the cellular character of the flow. A further test of this consistency
can be found by examining the case of NOB convection in liquids, where Q is
typically negative and l-hexagons with hot upflow in the centre are observed at onset
(see a sample pattern in Ciliberto, Pampaloni & Peréz-Garcı́a 1988). To examine the
behaviour of Betti numbers in liquids well above onset, we performed an analysis
of the homology of temperature field images from numerical simulations of NOB
convection in water reported in Madruga & Riecke (2007b) and reproduced in
figure 10. We find β0h > β0c, β1c >β1h, i.e. for NOB flows in liquids, the Betti number
asymmetry far from onset is consistent with the Betti number asymmetry for flows
near onset.

Our method of characterizing NOB effects depends upon obtaining averaged
homological quantities that are representative of the flow. Typically, the wide variety of
patterns that could be observed at fixed parameter values (ǫ and Q) will correspond to
differing topologies, as characterized by different values of Betti numbers. For the flows
studied here, we use time-averaging to obtain representative averaged Betti numbers
〈β0c〉, 〈β0h〉, 〈β1h〉, 〈β1c〉; in essence, we rely on the time dependence of the flows’
topology to sample ergotically the Betti numbers that are characteristic of (almost)
all flows at fixed ǫ and Q. Time-averaging may miss contributions from patterns
that lie in different basins of attractions; for example, the averaged Betti numbers
we report here do not account for stable patterns of ideal straight rolls that can be
observed in the range of ǫ explored in this study (Cakmur et al. 1997). We believe
that neglecting the impact of these time-independent roll patterns on 〈β0c〉, 〈β0h〉,
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〈β1h〉, 〈β1c〉 is justified because these patterns can only be accessed by means of very
special initial conditions (Cakmur et al. 1997); almost all initial conditions lead to the
time-dependent spatio-temporal patterns examined in our work. However, for values
of ǫ smaller than those examined here, time-independent patterns commonly arise at
each value of ǫ. In this regime, time-averaging will fail; however, other approaches
may be used to obtain 〈β0c〉, 〈β0h〉, 〈β1h〉 and 〈β1c〉. Representative patterns might be
obtained by performing experiments that begin from a wide variety of different initial
conditions (say, by use of external actuation (Semwogerere & Schatz 2004) or rapid
quenching from a larger value of ǫ). Such patterns would typically contain defects of
differing number, variety and distribution; thus, such patterns would typically exhibit
differing Betti numbers. We speculate that by averaging Betti numbers over a suitable
number of such patterns, it may still be possible to describe NOB effects using 〈β0c〉,
〈β0h〉, 〈β1h〉, 〈β1c〉 perhaps to very near the (subcritical) onset of convective flow. In
this regard, future experiments to examine this issue would be of interest.

We expect our results to hold for the analysis of measurements other than the
shadowgraph data discussed here. In earlier work, we demonstrated qualitatively that
homology reveals Betti number asymmetries in both temperature and vertical velocity
fields computed from numerical simulations of NOB convection (Krishan et al. 2007).
Moreover, we found that the time-averaged Betti numbers extracted from time series
of images in OB simulations showed little distinction between hot and cold flows
in both temperature and velocity fields. It would be interesting to see if the NOB
order parameter proposed here 〈1β0〉 exhibits the same behaviour as a function of
Q (along the lines shown in figure 7), independent of the data field used to extract
the homology. In this regard, experiments carried out in parallel with numerical
simulations at the same parameter values would prove to be most useful; such studies
could also help develop a theoretical understanding of how the results of the (present)
empirical homology analysis can be directly related to physical mechanisms in the
fluid flow.

Our results suggest that homology may be a useful tool to detect and quantify
symmetry breaking due to other mechanisms or in other pattern forming complex
systems. Although we find that homology is a quantitatively useful tool to investigate
the breaking of a particular symmetry (reflection symmetry) due to a particular
mechanism (the breakdown of the Oberbeck–Boussinesq approximation), we do not
claim that measures of homology are only to be used or are only useful to detect
NOB symmetry breaking. It is quite possible, for example, that homology might be
used to quantify the breaking of rotational and reflection symmetry in Rayleigh–
Bénard convection due to a completely different mechanism: the rotation of the flow
about a vertical axis. In fact, it would be very interesting to examine flows where
multiple causes of symmetry breaking are simultaneously present (e.g. NOB effects
and rotation in Rayleigh–Bénard convection) to see if homological measures might
be constructed to distinguish the impact of these different mechanisms. Likewise,
it would be of interest to examine whether homology may offer new insights in
pattern-forming complex systems other than Rayleigh–Bénard convection (e.g.
convection in a nematic liquid crystal with a magnetic field) that also exhibit symmetry
breaking.
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