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Secondary Instability in Plane Channel Flow with Spatially Periodic Perturbations
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Laboratory experiments on plane channel flow with a streamwise-periodic array of cylinders reveal a
bifurcation from two-dimensional traveling waves to three-dimensional spanwise standing waves. The
standing waves select a wave number that is independent of the wave number imposed initially by time-
periodic disturbances. The stable tertiary flow stands in contrast with most open flows where instability
develops directly to turbulence.

PACS numbers: 47.20.Ky, 47.20.Ft, 47.35.+i, 47.60.+i

The onset of three-dimensional motion is an important
stage in the transition to turbulence for open flows, where
fluid advects through the system [1,2]. Typically, three-
dimensional behavior grows from two-dimensional waves
that arise from the primary instability [3], but distin-

guishing separate stages is di%cult because open flows

generally do not equilibrate at finite amplitude after each
instability. Instead, successive instabilities lead directly
to turbulence as the flow develops downstream [4]. How-

ever, states that are stable for a range of control parame-
ter (e.g. , Reynolds number R) have been recently found
in open flows that contain spatially periodic geometric
perturbations [5-7]. A laboratory experiment and nu-

merical simulation on a spatially perturbed plane channel
demonstrated that the primary instability can occur as a
supercritical (continuous) Hopf bifurcation to stable
two-dimensional traveling waves [7]. A supercritical pri-

mary transition often occurs in closed flows, where fluid
never advects out of the system (e.g. , Couette-Taylor flow

or Rayleigh-Benard convection). In contrast to most

open flows, a sequence of well-separated transitions in

closed flows lead to ordered (nonturbulent) states beyond
the primary instability.

In this Letter we present evidence from laboratory ex-
periments for a secondary transition leading to a stable
ordered state in the open flow through a spatially per-
turbed plane channel. Our results suggest that open flows

can exhibit a sequence of bifurcations to stable nontur-
bulent states, Such behavior is particularly interesting
since instability in the spatially perturbed plane channel,
like that in most flows where fluid passes across system
boundaries, is convective [8] (disturbances grow in time
only in a comoving reference frame) rather than absolute
(disturbances grow in any frame) [7]; previous work has
shown the distinction between convective and absolute in-

stabilities is crucial in characterizing transition phenome-
na in fluids and plasmas [9-13].

Figure 1 depicts a plane channel flow that is geometri-
cally perturbed by cylinders in a spatially periodic array.
The Reynolds number is defined as R =Uph/v with the
kinematic viscosity v, channel half-depth h, and velocity
scale Uo, where Uo is defined as —,

' times the streamwise
velocity w averaged across ]7. L'0 and h are used to scale

velocity, length, and time (h/Up).
The experiment is performed in a water channel with

h =0.794 cm and with 21 cylinders approximating an
infinite periodic array. Cylinder I (numbering from up-
stream to downstream) lies a distance of 160 downstream
from the channel inlet; the unperturbed flow approaches a

parabolic profile in a length D =0.11Uph/v (20 for the
range of R investigated [14]. The experiment maintains
constant mass flux inflow-outflow boundary conditions
in x. The fluid temperature is controlled to +0.1'C
and the upstream root-mean-square velocity fluctuation
(noise) is typically 0.07% of Up.

Three-dimensional time-periodic disturbances [15] are
imposed by an oscillating paddle, whose axis of rotation is

located at (x = —4.8, y =0) upstream of cylinder I (Fig.
I). The range of oscillation frequencies investigated lies

within ~5% of the natural frequency selected by the
traveling-wave state [7]. Magnetically mounted bumps
with a semicircular cross section (radius 0.5) are placed
at regular intervals along z on one side of the paddle.
The presence of the bumps imposes a three-dimensional
variation whose wave number k~ can be controlled by
varying the number of bumps and their center-to-center
spacing.
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FIG. l. Our geometry of plane channel flow with spatially

periodic perturbations is defined in units of the half-depth h

by the cylinder spacing L =6.66, cross-channel location
= —0.50, and the cylinder diameter d=0.40. Flow is in the

streamwise direction x, and the spanwise dimension z (perpen-
dicular to the figure) and ranges from —20 to 20 in the experi-

ment. At the inlet of the cylinder array, time-periodic distur-

bances are imposed by a paddle, which oscillates about the

channel center line with an angular displacement lt =72 .

Semicircular bumps (shaded) whose length along =- is = 1 are

placed on the paddle to impose a controlled initial three dimen-

sionality on the disturbance. The paddle and bumps are dragon

to scale.
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FIG. 2. A digitally enhanced image of the flow at R =170
shows the standing-wave state. Dye for each wave front is pro-
duced electrochemically at the nearest upstream cylinder; the
straight vertical dye lines mark the separation bubble immedi-

ately downstream of each cylinder, whose position is indicated

by arrows. Each dye wave front is recorded separately in time;
however, the temporal periodicity of the flow is used to show all

dye fronts at the same phase in this composite image. Near
z =0, channel wall braces block a direct view of the flow; thus,
dotted lines have been drawn in to guide the eye. An initial
three dimensionality is imposed by two bumps on the distur-
bance paddle, which is shown approximately to scale at the far
left; the center-to-center spacing of the bumps imposes an ini-

tial wave number k;=0.42. The standing-wave pattern is not
advected downstream —see text.

Flow visualization reveals that the time-periodic distur-

bances evolve to standing waves along the span z (Fig. 2).
With thymol blue, a pH indicator, dissolved in the work-

ing fluid, dye is produced electrochemically near the

cylinders, which serve as electrodes, and is gathered into

fronts by the fiow field [16]. Digital imaging methods are

used to acquire, enhance, and analyze video images of the

dye fronts. Between cylinders 8 and 9, the dye front

displays a nearly sinusoidal variation along z. This varia-

tion decreases between cylinders 10 and 11 and the dye

front becomes nearly two dimensional (independent of z).
Between cylinders 13 and 14, the spanwise wave reap-

pears strongly; however, the phase along z has shifted by
180' relative to the dye front between cylinders 8 and 9;
for example, an upstream dye front "peak, " which leads

the mean streamwise position of the front, becomes a

downstream dye front "valley, " which lags the mean

front position. (The amplitude pinching of the peaks be-

tween cylinders 9 and 10 indicates the eventual location

of the valleys. ) Downstream of the region shown in Fig.

2, the dye fronts become nearly two dimensional again

between cylinders 16 and 17, and then a spanwise wave,

~hose phase matches that shown between cylinders 8 and

9, emerges between cylinders 18 and 19.
The onset of the spanwise standing waves occurs at

R2= 160 (Fig. 3). The standing waves develop spatially
in the strearnwise direction because they bifurcate from

convectively unstable two-dimensional traveling waves.

Growth or decay of the secondary instability is estimated

by comparing local maxima of dye front distortion at
difTerent streamwise positions (for example, in Fig. 2 the
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FIG. 3. (a) Local maxima of standing-wave amplitude are
compared simultaneously between upstream and downstream

regions for different Reynolds numbers. The disturbance pad-
dle imposes an initial wave number k; =0.9. (b) Standing-wave
amplitude A, , vs R is plotted for comparison between up-

stream (S) and downstream (0) locations in the experiment.
Each data point represents the average of seven dye fronts; the
error bars for each data point are smaller than the symbol size.
The disturbance paddle imposes an initial wave number

k; =0.42.

dye front between cylinders 8 and 9 is compared to the
dye front between cylinders 13 and 14). For lower values
of R [e.g. , R =145 in Fig. 3(a)], three-dimensional dis-
turbances observed upstream decay downstream to the
two-dimensional basic flow. However, for larger values of
R [e.g. , R =190 in Fig. 3(a)], three-dimensional distur-
bances grow downstream. The dye front distortion is

quantitatively characterized by the root-mean-square
fluctuations A,m, about the average streamwise position
of the dye front, as computed from digitized images of
the dye fronts. The "crossover" of 2„,between
upstream and downstream locations as R is increased
occurs at R2=160+'5, as can be seen in Fig. 3(b). The
instability at Rz is well above the onset of the primary in-
stability at R~ =130 [7]. The downstream amplitudes are
presumably nearly saturated, but to demonstrate this
would require a channel whose streamwise length would
be longer than our present channel. In any event, our re-
sults demonstrate that three dimensionality grows slowly
over several periods of the two-dimensional traveling
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namics and disturbances in convectively unstable open
flows.
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